Littlewood Subordination Theorem
   HOME
*





Littlewood Subordination Theorem
In mathematics, the Littlewood subordination theorem, proved by J. E. Littlewood in 1925, is a theorem in operator theory and complex analysis. It states that any Holomorphic function, holomorphic univalent function, univalent self-mapping of the unit disk in the complex numbers that fixes 0 induces a contraction operator, contractive composition operator on various function spaces of holomorphic functions on the disk. These spaces include the Hardy spaces, the Bergman spaces and Dirichlet space. Subordination theorem Let ''h'' be a holomorphic univalent mapping of the unit disk ''D'' into itself such that ''h''(0) = 0. Then the composition operator ''C''''h'' defined on holomorphic functions ''f'' on ''D'' by :C_h(f) = f\circ h defines a linear operator with operator norm less than 1 on the Hardy spaces H^p(D), the Bergman spaces A^p(D). (1 ≤ ''p'' < ∞) and the Dirichlet space \mathcal(D). The norms on these spaces are defined by: : \, f\, _^p = \sup_r ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardy Space
In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the ''Lp'' spaces of functional analysis. For 1 ≤ ''p'' < ∞ these real Hardy spaces ''Hp'' are certain s of ''Lp'', while for ''p'' < 1 the ''Lp'' spaces have some undesirable properties, and the Hardy spaces are much better behaved. There are also higher-dimensional generalizations, consisting of certain holomorphic functions on

Subharmonic Function
In mathematics, subharmonic and superharmonic functions are important classes of function (mathematics), functions used extensively in partial differential equations, complex analysis and potential theory. Intuitively, subharmonic functions are related to convex functions of one variable as follows. If the graph of a function, graph of a convex function and a line intersect at two points, then the graph of the convex function is ''below'' the line between those points. In the same way, if the values of a subharmonic function are no larger than the values of a harmonic function on the ''boundary'' of a ball (mathematics), ball, then the values of the subharmonic function are no larger than the values of the harmonic function also ''inside'' the ball. ''Superharmonic'' functions can be defined by the same description, only replacing "no larger" with "no smaller". Alternatively, a superharmonic function is just the additive inverse, negative of a subharmonic function, and for this rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Outer Function
In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the ''Lp'' spaces of functional analysis. For 1 ≤ ''p'' < ∞ these real Hardy spaces ''Hp'' are certain s of ''Lp'', while for ''p'' < 1 the ''Lp'' spaces have some undesirable properties, and the Hardy spaces are much better behaved. There are also higher-dimensional generalizations, consisting of certain holomorphic functions on



Inner Function
In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the ''Lp'' spaces of functional analysis. For 1 ≤ ''p'' < ∞ these real Hardy spaces ''Hp'' are certain s of ''Lp'', while for ''p'' < 1 the ''Lp'' spaces have some undesirable properties, and the Hardy spaces are much better behaved. There are also higher-dimensional generalizations, consisting of certain holomorphic functions on

Operator Norm
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Introduction and definition Given two normed vector spaces V and W (over the same base field, either the real numbers \R or the complex numbers \Complex), a linear map A : V \to W is continuous if and only if there exists a real number c such that \, Av\, \leq c \, v\, \quad \mbox v\in V. The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector by more than a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, one can take the infimum of the numbers c such that the above i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Space
In mathematics, the Dirichlet space on the domain \Omega \subseteq \mathbb, \, \mathcal(\Omega) (named after Peter Gustav Lejeune Dirichlet), is the reproducing kernel Hilbert space of holomorphic functions, contained within the Hardy space H^2(\Omega), for which the ''Dirichlet integral'', defined by : \mathcal(f) := \iint_\Omega , f^\prime(z), ^2 \, dA = \iint_\Omega , \partial_x f, ^2 + , \partial_y f, ^2 \, dx \, dy is finite (here ''dA'' denotes the area Lebesgue measure on the complex plane \mathbb). The latter is the integral occurring in Dirichlet's principle for harmonic functions. The Dirichlet integral defines a seminorm on \mathcal(\Omega). It is not a norm in general, since \mathcal(f) = 0 whenever ''f'' is a constant function. For f,\, g \in \mathcal(\Omega), we define :\mathcal(f, \, g) : = \iint_\Omega f'(z) \overline \, dA(z). This is a semi-inner product, and clearly \mathcal(f, \, f) = \mathcal(f). We may equip \mathcal(\Omega) with an inner product given ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE