Literal (mathematical Logic)
   HOME
*





Literal (mathematical Logic)
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: * A positive literal is just an atom (e.g., x). * A negative literal is the negation of an atom (e.g., \lnot x). The polarity of a literal is positive or negative depending on whether it is a positive or negative literal. In logics with double negation elimination (where \lnot \lnot x \equiv x) the complementary literal or complement of a literal l can be defined as the literal corresponding to the negation of l. We can write \bar to denote the complementary literal of l. More precisely, if l\equiv x then \bar is \lnot x and if l\equiv \lnot x then \bar is x. Double negation elimination occurs in classical logics but not in intuitionistic logic. In the context of a formula in the conjunctive normal form, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Propositional Calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Explanation Logical connectives are found in natural languages. In English for example, some examples are "and" (logical conjunction, conjunction), "or" (lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursive Definition
In mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set ( Aczel 1977:740ff). Some examples of recursively-definable objects include factorials, natural numbers, Fibonacci numbers, and the Cantor ternary set. A recursive definition of a function defines values of the function for some inputs in terms of the values of the same function for other (usually smaller) inputs. For example, the factorial function ''n''! is defined by the rules :0! = 1. :(''n'' + 1)! = (''n'' + 1)·''n''!. This definition is valid for each natural number ''n'', because the recursion eventually reaches the base case of 0. The definition may also be thought of as giving a procedure for computing the value of the function ''n''!, starting from ''n'' = 0 and proceeding onwards with ''n'' = 1, ''n'' = 2, ''n'' = 3 etc. The recursion theorem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Term (logic)
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variables and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation. For example, is a term built from the constant 1, the variable , and the binary function symbols and ; it is part of the atomic formula which evaluates to true for each real-numbered value of . Besides in logic, terms play important roles in universal algebra, and rewriting systems. Formal definition Given a set ''V'' of variable symbols, a set ''C'' of constant symbols and sets ''F''''n'' of ''n''-ary fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Predicate (mathematical Logic)
In logic, a predicate is a symbol which represents a property or a relation. For instance, in the first order formula P(a), the symbol P is a predicate which applies to the individual constant a. Similarly, in the formula R(a,b), R is a predicate which applies to the individual constants a and b. In the semantics of logic, predicates are interpreted as relations. For instance, in a standard semantics for first-order logic, the formula R(a,b) would be true on an interpretation if the entities denoted by a and b stand in the relation denoted by R. Since predicates are non-logical symbols, they can denote different relations depending on the interpretation used to interpret them. While first-order logic only includes predicates which apply to individual constants, other logics may allow predicates which apply to other predicates. Predicates in different systems * In propositional logic, atomic formulas are sometimes regarded as zero-place predicates In a sense, these are nullar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Predicate Calculus
Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: **Predicate (mathematical logic) **Propositional function **Finitary relation, or n-ary predicate **Boolean-valued function **Syntactic predicate, in formal grammars and parsers **Functional predicate *Predication (computer architecture) *in United States law, the basis or foundation of something **Predicate crime **Predicate rules, in the U.S. Title 21 CFR Part 11 * Predicate, a term used in some European context for either nobles' honorifics or for nobiliary particles See also * Predicate logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Propositional Variable
In mathematical logic, a propositional variable (also called a sentential variable or sentential letter) is an input variable (that can either be true or false) of a truth function. Propositional variables are the basic building-blocks of propositional formulas, used in propositional logic and higher-order logics. Uses Formulas in logic are typically built up recursively from some propositional variables, some number of logical connectives, and some logical quantifiers. Propositional variables are the atomic formulas of propositional logic, and are often denoted using capital roman letters such as P, Q and R. ;Example In a given propositional logic, a formula can be defined as follows: * Every propositional variable is a formula. * Given a formula ''X'', the negation ''¬X'' is a formula. * Given two formulas ''X'' and ''Y'', and a binary connective ''b'' (such as the logical conjunction ∧),the expression ''(X b Y)'' is a formula. (Note the parentheses.) Through this const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a ''vectorial'' or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a term. In model theory, atomic formulas are merely strings of symbols with a given signature, which may or may not be satisfiable with respect to a given mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpretati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]