List Of Set Identities And Relations
   HOME
*



picture info

List Of Set Identities And Relations
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations. The binary operations of set union (\cup) and intersection (\cap) satisfy many identities. Several of these identities or "laws" have well established names. Notation Throughout this article, capital letters such as A, B, C, L, M, R, S, and X will denote sets and \wp(X) will denote the power set of X. If it is needed then unless indicated otherwise, it should be assumed that X denotes the universe set, which means that all sets that are used in the formula are subsets of X. In particular, the complement of a set L will be denoted by L^C where unless indicated otherwise, it should be assumed that L^C denotes the complement of L in (the univers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Identity Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false, and a value of ''false'' when its operand is true. Thus if statement is true, then \neg P (pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Empty Set
In axiomatic set theory, the axiom of empty set is a statement that asserts the existence of a set with no elements. It is an axiom of Kripke–Platek set theory and the variant of general set theory that Burgess (2005) calls "ST," and a demonstrable truth in Zermelo set theory and Zermelo–Fraenkel set theory, with or without the axiom of choice. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\exists x\, \forall y\, \lnot (y \in x) or in words: :There is a set such that no element is a member of it. Interpretation We can use the axiom of extensionality to show that there is only one empty set. Since it is unique we can name it. It is called the ''empty set'' (denoted by or ∅). The axiom, stated in natural language, is in essence: :''An empty set exists''. This formula is a theorem and considered true in every version of set theory. The only controversy is over how it should be justified: by making it an axiom; by deriving it fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absorption Law
In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations. Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if: :''a'' ¤ (''a'' ⁂ ''b'') = ''a'' ⁂ (''a'' ¤ ''b'') = ''a''. A set equipped with two commutative and associative binary operations \scriptstyle \lor ("join") and \scriptstyle \land ("meet") that are connected by the absorption law is called a lattice; in this case, both operations are necessarily idempotent. Examples of lattices include Heyting algebras and Boolean algebras,See Boolean algebra (structure)#Axiomatics for a proof of the absorption laws from the distributivity, identity, and boundary laws. in particular sets of sets with ''union'' and ''intersection'' operators, and ordered sets with ''min'' and ''max'' operations. In classical logic, and in particular Boolean algebra, the operations OR and AND, which are also denoted by \scriptstyle \lor and \scriptstyle \land, sat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jordan Identity
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: # xy = yx (commutative law) # (xy)(xx) = x(y(xx)) (). The product of two elements ''x'' and ''y'' in a Jordan algebra is also denoted ''x'' ∘ ''y'', particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that x^n = x \cdots x is independent of how we parenthesize this expression. They also imply that x^m (x^n y) = x^n(x^m y) for all positive integers ''m'' and ''n''. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element x, the operations of multiplying by powers x^n all commute. Jordan algebras were first introduced by to formalize the notion of an algebra of observables in quantum mechanics. They were originally called "r-number systems", but were renamed "Jordan algebras" by , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-commutative
In mathematics, the quasi-commutative property is an extension or generalization of the general commutative property. This property is used in specific applications with various definitions. Applied to matrices Two matrices p and q are said to have the commutative property whenever pq = qp The quasi-commutative property in matrices is definedNeal H. McCoyOn quasi-commutative matrices. ''Transactions of the American Mathematical Society, 36''(2), 327–340 as follows. Given two non-commutable matrices x and y xy - yx = z satisfy the quasi-commutative property whenever z satisfies the following properties: \begin xz &= zx \\ yz &= zy \end An example is found in the matrix mechanics introduced by Heisenberg as a version of quantum mechanics. In this mechanics, ''p'' and ''q'' are infinite matrices corresponding respectively to the momentum and position variables of a particle. These matrices are written out at Matrix mechanics#Harmonic oscillator, and z = iħ times the infinit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Right Alternative
In abstract algebra, alternativity is a property of a binary operation. A magma ''G'' is said to be if (xx)y = x(xy) for all x, y \in G and if y(xx) = (yx)x for all x, y \in G. A magma that is both left and right alternative is said to be ().. Any associative magma (that is, a semigroup) is alternative. More generally, a magma in which every pair of elements generates an associative submagma must be alternative. The converse, however, is not true, in contrast to the situation in alternative algebras. In fact, an alternative magma need not even be power-associative In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity. Definition An algebra (or more generally a magma) is said to be power-associative if the subalgebra ge .... References Properties of binary operations {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Left Alternative
In abstract algebra, alternativity is a property of a binary operation. A magma ''G'' is said to be if (xx)y = x(xy) for all x, y \in G and if y(xx) = (yx)x for all x, y \in G. A magma that is both left and right alternative is said to be ().. Any associative magma (that is, a semigroup) is alternative. More generally, a magma in which every pair of elements generates an associative submagma must be alternative. The converse, however, is not true, in contrast to the situation in alternative algebras. In fact, an alternative magma need not even be power-associative In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity. Definition An algebra (or more generally a magma) is said to be power-associative if the subalgebra ge .... References Properties of binary operations {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Operation
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Morgan's Laws
In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation. The rules can be expressed in English as: * The negation of a disjunction is the conjunction of the negations * The negation of a conjunction is the disjunction of the negations or * The complement of the union of two sets is the same as the intersection of their complements * The complement of the intersection of two sets is the same as the union of their complements or * not (A or B) = (not A) and (not B) * not (A and B) = (not A) or (not B) where "A or B" is an "inclusive or" meaning ''at least'' one of A or B rather than an "exclusive or" that means ''exactly'' one of A or B. In set theory and Boolean algebra, these ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto -x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = a_ + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]