List Of Graph Theory Topics
   HOME





List Of Graph Theory Topics
This is a list of graph theory topics, by Wikipedia page. See glossary of graph theory for basic terminology. Examples and types of graphs Graph coloring Paths and cycles Trees Terminology *Node ** Child node ** Parent node ** Leaf node **Root node **Root (graph theory) Operations *Tree structure *Tree data structure *Cayley's formula *Kőnig's lemma * Tree (set theory) (need not be a tree in the graph-theory sense, because there may not be a unique path between two vertices) *Tree (descriptive set theory) * Euler tour technique Graph limits * Graphon Graphs in logic * Conceptual graph * Entitative graph * Existential graph * ''Laws of Form'' * Logical graph Mazes and labyrinths * Labyrinth * Maze * Maze generation algorithm Algorithms * Ant colony algorithm *Breadth-first search *Depth-first search *Depth-limited search * FKT algorithm * Flood fill * Graph exploration algorithm *Matching (graph theory) * Max flow min cut theorem * Maximum-cardinality ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Graph
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. Symmetry In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number ''s'' such that each two oriented paths of length ''s'' can be mapped to each other by exactly one symmetry of the graph. He showed that ''s'' is at most 5, and provided examples of graphs with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lollipop Graph
In the mathematical discipline of graph theory, the (''m'',''n'')-lollipop graph is a special type of graph consisting of a complete graph (clique) on ''m'' vertices and a path graph on ''n'' vertices, connected with a bridge. The special case of the (2''n''/3,''n''/3)-lollipop graphs are known to be graphs which achieve the maximum possible hitting time In the study of stochastic processes in mathematics, a hitting time (or first hit time) is the first time at which a given process "hits" a given subset of the state space. Exit times and return times are also examples of hitting times. Definiti ..., cover time and commute time. See also * Barbell graph * Tadpole graph References Parametric families of graphs {{graph-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Graph
In the mathematics, mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edge (graph theory), edges of . is constructed in the following way: for each edge in , make a vertex in ; for every two edges in that have a vertex in common, make an edge between their corresponding vertices in . The name ''line graph'' comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate, the representative graph, and the θ-obrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71. proved that with one exceptional case the structure of a connected graph can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Indifference Graph
In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other.. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals (intervals none of which contains any other one). Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs. Equivalent characterizations The finite indifference graphs may be equivalently characterized as *The intersection graphs of unit intervals, *The intersection graphs of sets of intervals no two of which are nested (one containing the other),. *The claw-free graph, claw-free interval graphs, *The graphs that do not have an induced subgraph isomorphic to a Claw (graph theory), claw ''K''1,3, net (a triangle with a degree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE