Lollipop Graph
   HOME

TheInfoList



OR:

In the mathematical discipline of
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the (''m'',''n'')-lollipop graph is a special type of
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
consisting of a
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices ...
(clique) on ''m'' vertices and a
path graph In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order such that the edges are where . Equivalently, a path with at least two vertices is connected and has two terminal ...
on ''n'' vertices, connected with a
bridge A bridge is a structure built to span a physical obstacle (such as a body of water, valley, road, or rail) without blocking the way underneath. It is constructed for the purpose of providing passage over the obstacle, which is usually somethi ...
. The special case of the (''2n/3'',''n/3'')-lollipop graphs are known as graphs which achieve the maximum possible hitting time, cover time and commute time.


See also

* Barbell graph *
Tadpole graph In the mathematical discipline of graph theory, the (''m'',''n'')-tadpole graph is a special type of graph consisting of a cycle graph on ''m'' (at least 3) vertices and a path graph on ''n'' vertices, connected with a bridge A bridge ...


References

Parametric families of graphs {{combin-stub