List Of Alpha Emitting Materials
   HOME
*





List Of Alpha Emitting Materials
The following are among the principal radioactive materials known to emit alpha particles Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod .... * 209Bi, 211Bi, 212Bi, 213Bi * 210Po, 211Po, 212Po, 214Po, 215Po, 216Po, 218Po * 215At, 217At, 218At * 218Rn, 219Rn, 220Rn, 222Rn, 226Rn * 221Fr * 223Ra, 224Ra, 226Ra * 225Ac, 227Ac * 227Th, 228Th, 229Th, 230Th, 232Th * 231Pa * 233U, 234U, 235U, 236U, 238U * 237Np * 238Pu, 239Pu, 240Pu, 244Pu * 241Am * 244Cm, 245Cm, 248Cm * 249Cf, 252Cf Alpha emitting Alpha emitting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radioactive
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay ( ), beta decay ( ), and gamma decay ( ), all of which involve emitting one or more particles. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force. A fourth type of common decay is electron capture, in which an unstable nucleus captures an inner electron from one of the electron shells. The loss of that electron from the shell results in a cascade of electrons dropping down to that lower shell resulting in emission of discrete X-rays from the transitions. A common example is iodine-125 commonly used in medical settings. Radioactive decay is a stochastic (i.e. random) process ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radon-219
There are 37 known isotopes of radon (86Rn), from 195Rn to 231Rn; all are radioactive. The most stable isotope is 222Rn with a half-life of 3.823 days, which decays into . Five isotopes of radon, 217, 218, 219, 220, 222Rn occur in trace quantities in nature as decay products of, respectively, 217At, 218At, 223Ra, 224Ra, and 226Ra. 217Rn is produced in a rare branch in the decay chain of trace quantities of 237Np; 218Rn and 222Rn are intermediate steps in the decay chain for 238U; 219Rn is an intermediate step in the decay chain for 235U; and 220Rn occurs in the decay chain for 232Th. List of isotopes , - , 195Rn , , style="text-align:right" , 86 , style="text-align:right" , 109 , 195.00544(5) , 6 ms , , , 3/2−# , , - , style="text-indent:1em" , 195mRn , , colspan="3" style="text-indent:2em" , 50(50) keV , 6 ms , , , 13/2+# , , - , rowspan=2, 196Rn , rowspan=2, , rowspan=2 style="text-align:right" , 86 , rowspan=2 style="text-alig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thorium-230
Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given. Thirty-one radioisotopes have been characterized, with the most stable being 232Th, 230Th with a half-life of 75,380 years, 229Th with a half-life of 7,917 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, 229Th, has a nucl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thorium-229
Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given. Thirty-one radioisotopes have been characterized, with the most stable being 232Th, 230Th with a half-life of 75,380 years, 229Th with a half-life of 7,917 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, 229Th, has a nucl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thorium-228
Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, thorium-232, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic elements, mononuclidic. However, in 2013, International Union of Pure and Applied Chemistry, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given. Thirty-one radioisotopes have been characterized, with the most stable being 232Th, 230Th with a half-life of 75,380 years, 229Th with a half-life of 7,917 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thorium-227
Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given. Thirty-one radioisotopes have been characterized, with the most stable being 232Th, 230Th with a half-life of 75,380 years, 229Th with a half-life of 7,917 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, 229Th, has a nucl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Actinium-227
Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 33 known isotopes, from 204Ac to 236Ac, and 7 isomers. Three isotopes are found in nature, 225Ac, 227Ac and 228Ac, as intermediate decay products of, respectively, 237Np, 235U, and 232Th. 228Ac and 225Ac are extremely rare, so almost all natural actinium is 227Ac. The most stable isotopes are 227Ac with a half-life of 21.772 years, 225Ac with a half-life of 10.0 days, and 226Ac with a half-life of 29.37 hours. All other isotopes have half-lives under 10 hours, and most under a minute. The shortest-lived known isotope is 217Ac with a half-life of 69 ns. Purified 227Ac comes into equilibrium with its decay products (227Th and 223Fr) after 185 days. List of isotopes , - , 204Ac , , style="text-align:right" , 89 , style="text-align:right" , 115 , , , α , 200Fr , , , - , 205Ac , , style="text-align:right" , 89 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Actinium-225
Actinium-225 (225Ac, Ac-225) is an isotope of actinium. It undergoes alpha decay to francium-221 with a half-life of 10 days, and is an intermediate decay product in the neptunium series (the decay chain starting at 237Np). Except for minuscule quantities arising from this decay chain in nature, 225Ac is entirely synthetic. The decay properties of actinium-225 are favorable for usage in targeted alpha therapy (TAT); clinical trials have demonstrated the applicability of radiopharmaceuticals containing 225Ac to treat various types of cancer. However, the scarcity of this isotope resulting from its necessary synthesis in cyclotrons limits its potential applications. Decay and occurrence Actinium-225 has a half-life of 10 days and decays by alpha emission. It is part of the neptunium series, for it arises as a decay product of neptunium-237 and its daughters such as uranium-233 and thorium-229. It is the last nuclide in the chain with a half-life over a day until the penulti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radium-226
Radium (88Ra) has no stable or nearly stable isotopes, and thus a standard atomic weight cannot be given. The longest lived, and most common, isotope of radium is 226Ra with a half-life of . 226Ra occurs in the decay chain of 238U (often referred to as the radium series). Radium has 33 known isotopes from 202Ra to 234Ra. In 2013 it was discovered that the nucleus of radium-224 is pear-shaped. This was the first discovery of an asymmetric nucleus. List of isotopes , - , 202Ra , , style="text-align:right" , 88 , style="text-align:right" , 114 , 202.00989(7) , 2.6(21) ms .7(+33−3) ms, , , 0+ , , - , rowspan=2, 203Ra , rowspan=2, , rowspan=2 style="text-align:right" , 88 , rowspan=2 style="text-align:right" , 115 , rowspan=2, 203.00927(9) , rowspan=2, 4(3) ms , α , 199Rn , rowspan=2, (3/2−) , rowspan=2, , - , β+ (rare) , 203Fr , - , rowspan=2 style="text-indent:1em" , 203mRa , rowspan=2, , rowspan=2 colspan="3" style="text-i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radium-224
Radium (88Ra) has no stable or nearly stable isotopes, and thus a standard atomic weight cannot be given. The longest lived, and most common, isotope of radium is 226Ra with a half-life of . 226Ra occurs in the decay chain of 238U (often referred to as the radium series). Radium has 33 known isotopes from 202Ra to 234Ra. In 2013 it was discovered that the nucleus of radium-224 is pear-shaped. This was the first discovery of an asymmetric nucleus. List of isotopes , - , 202Ra , , style="text-align:right" , 88 , style="text-align:right" , 114 , 202.00989(7) , 2.6(21) ms .7(+33−3) ms, , , 0+ , , - , rowspan=2, 203Ra , rowspan=2, , rowspan=2 style="text-align:right" , 88 , rowspan=2 style="text-align:right" , 115 , rowspan=2, 203.00927(9) , rowspan=2, 4(3) ms , α , 199Rn , rowspan=2, (3/2−) , rowspan=2, , - , β+ (rare) , 203Fr , - , rowspan=2 style="text-indent:1em" , 203mRa , rowspan=2, , rowspan=2 colspan="3" style="text-in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radium-223
Radium-223 (223Ra, Ra-223) is an Isotopes of radium#Radium-223, isotope of radium with an 11.4-day half-life. It was discovered in 1905 by T. Godlewski, a Polish chemist from Kraków, and was historically known as Decay chain#Actinium series, actinium X (AcX). Radium-223 dichloride is an alpha particle-emitting radiotherapy drug that mimics calcium and forms complexes with hydroxyapatite at areas of increased bone turnover. The principal use of radium-223, as a radiopharmaceutical to treat Metastasis, metastatic cancers in bone, takes advantage of its chemical similarity to calcium, and the short range of the alpha radiation it emits. Origin and preparation Although radium-223 is naturally formed in trace amounts by the Decay chain#Actinium series, decay of uranium-235, it is generally made artificially,Bruland O.S., Larsen R.H. (2003). Radium revisited. In: Bruland O.S., Flgstad T., editors. Targeted cancer therapies: An odyssey. University Library of Tromso, Ravnetrykk No. 29. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Francium-221
Francium (87Fr) has no stable isotopes. A standard atomic weight cannot be given. Its most stable isotope is 223Fr with a half-life of 22 minutes, occurring in trace quantities as an intermediate decay product of 235U. Of elements whose most stable isotopes have been identified with certainty, francium is the most unstable. All elements with atomic number of 106 ( seaborgium) or greater have most-stable-known isotopes shorter than that of francium, but as those elements have only a relatively small number of isotopes discovered, the possibility remains that undiscovered isotopes of these elements may have longer half-lives. List of isotopes , - , 199Fr , , style="text-align:right" , 87 , style="text-align:right" , 112 , 199.00726(4) , 16(7) ms , , , 1/2+# , , - , 200Fr , , style="text-align:right" , 87 , style="text-align:right" , 113 , 200.00657(8) , 24(10) ms , α , 196At , 3+# , , - , rowspan=2 style="text-indent:1em" , 200mFr , rowspan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]