List Of Y-DNA Single-nucleotide Polymorphisms
   HOME
*





List Of Y-DNA Single-nucleotide Polymorphisms
{, class="wikitable" !Mutation number !Nucleotide change !Position (base pair) !Total size (base pairs) !Position Forward 5′→3′ !Reverse 5′→3′ , - !M1 (YAP) , 291bp insertion , , , , , - !M2 , A to G , 168 , 209 , , , - !M3 , , , , , , - !M4 , , , , , , - !M8 , , , , , , - !M9 , , , , , , - !M15 , , , , , , - !M17 , , , , , , - !M20 , , , , , , - !M33 , , , , , , - !M35 , , , , , , - !M38 , , , , , , - !M40 , , , , , , - !M42 , , , , , , - !M45 , , , , , , - !M52 , , , , , , - !M55 , , , , , , - !M57 , , , , , , - !M60 , , , , , , - !M64.1 , , , , , , - !M75 , , , , , , - !M89 , , , , , , - !M91 , , , , , , - !M94 , , , , , , - !M95 , , , , , , - !M96 , , , , , , - !M105 , , , , , , - !M122 , , , , , , - !M124 , , , , , , - !M130 , , , , , , - !M131 , , , , , , - !M132 , , , , , , - !M139 , , , , , , - !M145 , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nucleotide
Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver. Nucleotides are composed of three subunit molecules: a nucleobase, a five-carbon sugar (ribose or deoxyribose), and a phosphate group consisting of one to three phosphates. The four nucleobases in DNA are guanine, adenine, cytosine and thymine; in RNA, uracil is used in place of thymine. Nucleotides also play a central role in metabolism at a fundamental, cellular level. They provide chemical energy—in the form of the nucleoside triphosphates, adenosine triphosphate (ATP), guanosine triphosphate (GTP), cytidine triphosphate (CTP) and uridine triphosphate (UTP)—throughout the cell for the many cellular func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Y-STR Markers
The following list of Y-STR markers are commonly used in forensic and genealogical DNA testing. DYS454 is the least diverse, and multi-copy marker DYS464 is the most diverse Y-STR marker. The location on the Y-chromosome of numbered Y-STR markers can be roughly given with cytogenetic localization. For example, DYS449 is located at Yp11.2 - meaning the Y-chromosome, petit arm, band 1, sub-band 1, sub-sub-band 2 - DYS449. Forensic Labs usually use PowerPlex Y (Promega Corporation) and Yfiler (Applied Biosystems) kits that examine 12 or 17 Y-STRs, respectively. Genealogical DNA test labs examine up to 700 Y-STRs. Mutation rates Mutation rates are those per generation, as estimated in Chandler (2006). The quoted estimated errors are typically +/- 15-20%. Alternative estimates (for forensic use therefore not all markers are covered) from observed pedigrees are also available at the Y Chromosome Haplotype Reference Database. It appears that some trinucleotide markers may have mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bioinformatics
Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combines biology, chemistry, physics, computer science, information engineering, mathematics and statistics to analyze and interpret the biological data. Bioinformatics has been used for '' in silico'' analyses of biological queries using computational and statistical techniques. Bioinformatics includes biological studies that use computer programming as part of their methodology, as well as specific analysis "pipelines" that are repeatedly used, particularly in the field of genomics. Common uses of bioinformatics include the identification of candidates genes and single nucleotide polymorphisms (SNPs). Often, such identification is made with the aim to better understand the genetic basis of disease, unique adaptations, desirable properties (e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phylogenetics
In biology, phylogenetics (; from Greek language, Greek wikt:φυλή, φυλή/wikt:φῦλον, φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups of organisms. These relationships are determined by Computational phylogenetics, phylogenetic inference methods that focus on observed heritable traits, such as DNA sequences, Protein, protein Amino acid, amino acid sequences, or Morphology (biology), morphology. The result of such an analysis is a phylogenetic tree—a diagram containing a hypothesis of relationships that reflects the evolutionary history of a group of organisms. The tips of a phylogenetic tree can be living taxa or fossils, and represent the "end" or the present time in an evolutionary lineage. A phylogenetic diagram can be rooted or unrooted. A rooted tree diagram indicates the hypothetical common ancestor of the tree. An un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genetic Genealogy
Genetic genealogy is the use of genealogical DNA tests, i.e., DNA profiling and DNA testing, in combination with traditional genealogical methods, to infer genetic relationships between individuals. This application of genetics came to be used by family historians in the 21st century, as DNA tests became affordable. The tests have been promoted by amateur groups, such as surname study groups or regional genealogical groups, as well as research projects such as the Genographic Project. As of 2019, about 30 million people had been tested. As the field developed, the aims of practitioners broadened, with many seeking knowledge of their ancestry beyond the recent centuries, for which traditional pedigrees can be constructed. History The investigation of surnames in genetics can be said to go back to George Darwin, a son of Charles Darwin and Charles' first cousin Emma Darwin. In 1875, George Darwin used surnames to estimate the frequency of first-cousin marriages and calculated t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Population Genetics
Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, and language. Humans are highly social and tend to live in complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states. Social interactions between humans have established a wide variety of values, social norms, and rituals, which bolster human society. Its intelligence and its desire to understand and influence the environment and to explain and manipulate phenomena have motivated humanity's development of science, philosophy, mythology, religion, and other fields of study. Although some scientists equate the term ''humans'' with all members of the genus ''Homo'', in common usage, it generally refers to ''Homo sapiens'', the only extant member. Anatomically mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Evolution
Human evolution is the evolutionary process within the history of primates that led to the emergence of ''Homo sapiens'' as a distinct species of the hominid family, which includes the great apes. This process involved the gradual development of traits such as human bipedalism and language, as well as interbreeding with other hominins, which indicate that human evolution was not linear but a web.Human Hybrids
(PDF). Michael F. Hammer. ''Scientific American'', May 2013.
The study of human evolution involves scientific disciplines, including
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Y-chromosome DNA Haplogroup
In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non- recombining portions of DNA from the male-specific Y chromosome (called Y-DNA). Many people within a haplogroup share similar numbers of short tandem repeats (STRs) and types of mutations called single-nucleotide polymorphisms (SNPs). The human Y-chromosome accumulates roughly two mutations per generation. "one mutation in every 30 million base pairs" Y-DNA haplogroups represent major branches of the Y-chromosome phylogenetic tree that share hundreds or even thousands of mutations unique to each haplogroup. The Y-chromosomal most recent common ancestor (Y-MRCA, informally known as Y-chromosomal Adam) is the most recent common ancestor (MRCA) from whom all currently living humans are descended patrilineally. Y-chromosomal Adam is estimated to have lived roughly 236,000 years ago in Africa. By examining other bottlenecks most Eurasian men (men from populations outside of Afri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base Pair
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs (guanine–cytosine and adenine–thymine) allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The Complementarity (molecular biology), complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique-event Polymorphism
In genetic genealogy, a unique-event polymorphism (UEP) is a genetic marker that corresponds to a mutation that is likely to occur so infrequently that it is believed overwhelmingly probable that all the individuals who share the marker, worldwide, will have inherited it from the same common ancestor, and the same single mutation event. Generally, UEP is an allele for which all copies derive from a single mutational event. In genetic genealogy, the mutations considered to be UEPs can be any germline mutation. They are usually single-nucleotide polymorphisms (SNP) – the replacement of one letter by another in the DNA sequence, and the terms UEP and SNP are often loosely used interchangeably. But UEPs may also be large-scale additions, such as the YAP insertion that defines Y-DNA haplogroup DE, inversions or deletions. The discovery and widespread testing of new UEPs has been the key to the increasingly detailed analysis of the patrilineal and matrilineal ancestry of ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Single-nucleotide Polymorphism
In genetics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently large fraction of the population (e.g. 1% or more), many publications do not apply such a frequency threshold. For example, at a specific base position in the human genome, the G nucleotide may appear in most individuals, but in a minority of individuals, the position is occupied by an A. This means that there is a SNP at this specific position, and the two possible nucleotide variations – G or A – are said to be the alleles for this specific position. SNPs pinpoint differences in our susceptibility to a wide range of diseases, for example age-related macular degeneration (a common SNP in the CFH gene is associated with increased risk of the disease) or nonalcoholic fatty liver disease (a SNP in the PNPLA3 gene is associated with inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]