Linearly Disjoint
   HOME
*





Linearly Disjoint
In mathematics, algebras ''A'', ''B'' over a field ''k'' inside some field extension \Omega of ''k'' are said to be linearly disjoint over ''k'' if the following equivalent conditions are met: *(i) The map A \otimes_k B \to AB induced by (x, y) \mapsto xy is injective. *(ii) Any ''k''-basis of ''A'' remains linearly independent over ''B''. *(iii) If u_i, v_j are ''k''-bases for ''A'', ''B'', then the products u_i v_j are linearly independent over ''k''. Note that, since every subalgebra of \Omega is a domain, (i) implies A \otimes_k B is a domain (in particular reduced). Conversely if ''A'' and ''B'' are fields and either ''A'' or ''B'' is an algebraic extension of ''k'' and A \otimes_k B is a domain then it is a field and ''A'' and ''B'' are linearly disjoint. However, there are examples where A \otimes_k B is a domain but ''A'' and ''B'' are not linearly disjoint: for example, ''A'' = ''B'' = ''k''(''t''), the field of rational functions over ''k''. One also has: ''A'', ''B'' are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ''F''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . This me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linearly Independent
In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne 0, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Integral Domain
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element ''a'' has the cancellation property, that is, if , an equality implies . "Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a multiplicative identity, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity. Noncommutative integral domains are sometimes admitted. This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using "domain" for the general case including noncommutative rings. Some sources, notably Lang, use the term entir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Ring
In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, ''x''2 = 0 implies ''x'' = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced. The nilpotent elements of a commutative ring ''R'' form an ideal of ''R'', called the nilradical of ''R''; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero. A quotient ring ''R/I'' is reduced if and only if ''I'' is a radical ideal. Let ''D'' be the set of all zero-divisors in a reduced ring ''R''. Then ''D'' is the union of all minimal prime ideals. Over a Noetherian ring ''R'', we say a finitely generated module ''M'' has locally constant rank if \mathfrak \mapsto \operatorname_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Extension
In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field \Q of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory. Another example of a common algebraic extension is the extension \Complex/\R of the real numbers by the complex numbers. Some properties All transcendental extensions are of infinite degree. This in turn implies that all finite extensions are algebraic. The converse is not true however: there are infinite extensions which are algebraic. For instance, the field of all algebraic numbers is an infinite algebraic extension of the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Of Rational Functions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements. The field of fractions of R is sometimes denoted by \operatorname(R) or \operatorname(R), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of R. All four are in common usage, but are not to be confused with the quotient of a ring by an ideal, which is a quite different concept. For a commutative ring which is not an integral domain, the analogous construction is called the localization or ring of quotients. Definition Given an integral domain and letting R^* = R \setminus \, we define an equivalence relation on R \times R^* by letting (n,d) \sim (m,b) whenever nb = md. We denote the equivale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]