Levitzky's Theorem
   HOME
*





Levitzky's Theorem
In mathematics, more specifically ring theory and the theory of nil ideals, Levitzky's theorem, named after Jacob Levitzki, states that in a right Noetherian ring, every nil one-sided ideal is necessarily nilpotent. Levitzky's theorem is one of the many results suggesting the veracity of the Köthe conjecture, and indeed provided a solution to one of Köthe's questions as described in . The result was originally submitted in 1939 as , and a particularly simple proof was given in . Proof This is Utumi's argument as it appears in ;Lemma Assume that ''R'' satisfies the ascending chain condition on annihilators of the form \ where ''a'' is in ''R''. Then # Any nil one-sided ideal is contained in the lower nil radical Nil*(''R''); # Every nonzero nil right ideal contains a nonzero nilpotent right ideal. # Every nonzero nil left ideal contains a nonzero nilpotent left ideal. ;Levitzki's Theorem Let ''R'' be a right Noetherian ring. Then every nil one-sided ideal of ''R'' is nilpote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nil Ideal
In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent., p. 194 The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture. Commutative rings In commutative rings, the nil ideals are better understood than in noncommutative rings, primarily because in commutative rings, products involving nilpotent elements and sums of nilpotent elements are both nilpotent. This is because if ''a'' and ''b'' are nilpotent elements of ''R'' with ''a''n=0 and ''b''m=0, and r is any element of R, then (''a''·''r'')n = ''a''n·''r''n = 0, and by the binomial theorem, (''a''+''b'')m+n=0. Therefore, the set of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacob Levitzki
Jacob Levitzki, also known as Yaakov Levitsky ( he, יעקב לויצקי) (17 August 1904 - 25 February 1956) was an Israeli mathematician. Biography Levitzki was born in 1904 in the Russian Empire and emigrated to then Ottoman-ruled Palestine in 1912. After completing his studies at the Herzliya Gymnasia, he travelled to Germany and, in 1929, obtained a doctorate in mathematics from the University of Göttingen under the supervision of Emmy Noether. In 1931, after two years at Yale University, in New Haven, Connecticut, Levitzki returned to Palestine to join the faculty at the Hebrew University of Jerusalem. Awards Levitzki together with Shimshon Amitsur, who had been one of his students at the Hebrew University, were each awarded the Israel Prize in exact sciences in 1953, the inaugural year of the prize, for their work on the laws of noncommutative rings. Levitzki's son Alexander Levitzki, a recipient of the Israel Prize in 1990, in life sciences, established the Levitzki ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Ideal
In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I''''k'' = 0. By ''I''''k'', it is meant the additive subgroup generated by the set of all products of ''k'' elements in ''I''. Therefore, ''I'' is nilpotent if and only if there is a natural number ''k'' such that the product of any ''k'' elements of ''I'' is 0. The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings. There are, however, instances when the two notions coincide—this is exemplified by Levitzky's theorem. The notion of a nilpotent ideal, although interesting in the case of commutative rings, is most interesting in the case of noncommutative rings. Relation to nil ideals The notion of a nil ideal has a deep connection with that of a nilpotent ideal, and in some classes of rings, the two notions coincide. If an ideal is nilpotent, it is of course nil, but a nil ideal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Köthe Conjecture
In mathematics, the Köthe conjecture is a problem in ring theory, open . It is formulated in various ways. Suppose that ''R'' is a ring. One way to state the conjecture is that if ''R'' has no nil ideal, other than , then it has no nil one-sided ideal, other than . This question was posed in 1930 by Gottfried Köthe (1905–1989). The Köthe conjecture has been shown to be true for various classes of rings, such as polynomial identity rings and right Noetherian rings, but a general solution remains elusive. Equivalent formulations The conjecture has several different formulations: # (Köthe conjecture) In any ring, the sum of two nil left ideals is nil. # In any ring, the sum of two one-sided nil ideals is nil. # In any ring, every nil left or right ideal of the ring is contained in the upper nil radical of the ring. # For any ring ''R'' and for any nil ideal ''J'' of ''R'', the matrix ideal M''n''(''J'') is a nil ideal of M''n''(''R'') for every ''n''. # For any ring ''R'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ascending Chain Condition
In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These conditions played an important role in the development of the structure theory of commutative rings in the works of David Hilbert, Emmy Noether, and Emil Artin. The conditions themselves can be stated in an abstract form, so that they make sense for any partially ordered set. This point of view is useful in abstract algebraic dimension theory due to Gabriel and Rentschler. Definition A partially ordered set (poset) ''P'' is said to satisfy the ascending chain condition (ACC) if no infinite strictly ascending sequence :a_1 < a_2 < a_3 < \cdots of elements of ''P'' exists. Equivalently,Proof: first, a strictly increasing sequence cannot stabilize, obviously. Conversely, suppose there is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Annihilator (ring Theory)
In mathematics, the annihilator of a subset of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of . Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal. Definitions Let ''R'' be a ring, and let ''M'' be a left ''R''-module. Choose a non-empty subset ''S'' of ''M''. The annihilator of ''S'', denoted Ann''R''(''S''), is the set of all elements ''r'' in ''R'' such that, for all ''s'' in ''S'', . In set notation, :\mathrm_R(S)=\ It is the set of all elements of ''R'' that "annihilate" ''S'' (the elements for which ''S'' is a torsion set). Subsets of right modules may be used as well, after the modification of "" in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiprime Ring
In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form n\mathbb Z where ''n'' is a square-free integer. So, 30\mathbb Z is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but 12\mathbb Z\, is not (because 12 = 22 × 3, with a repeated prime factor). The class of semiprime rings includes semiprimitive rings, prime rings and reduced rings. Most definitions and assertions in this article appear in and . Definitions For a commutative ring ''R'', a proper ideal ''A'' is a semiprime ideal if ''A'' satisfies either of the following equivalent conditions: * If ''x''''k'' is in ''A'' for some positive integer ''k'' and element ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma. Definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

American Journal Of Mathematics
The ''American Journal of Mathematics'' is a bimonthly mathematics journal published by the Johns Hopkins University Press. History The ''American Journal of Mathematics'' is the oldest continuously published mathematical journal in the United States, established in 1878 at the Johns Hopkins University by James Joseph Sylvester, an English-born mathematician who also served as the journal's editor-in-chief from its inception through early 1884. Initially W. E. Story was associate editor in charge; he was replaced by Thomas Craig in 1880. For volume 7 Simon Newcomb became chief editor with Craig managing until 1894. Then with volume 16 it was "Edited by Thomas Craig with the Co-operation of Simon Newcomb" until 1898. Other notable mathematicians who have served as editors or editorial associates of the journal include Frank Morley, Oscar Zariski, Lars Ahlfors, Hermann Weyl, Wei-Liang Chow, S. S. Chern, André Weil, Harish-Chandra, Jean Dieudonné, Henri Cartan, Stephen S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]