HOME
*





Laplace Pressure
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids. The Laplace pressure is determined from the Young–Laplace equation given as : \Delta P \equiv P_\text - P_\text = \gamma\left(\frac+\frac\right), where R_1 and R_2 are the principal radii of curvature and \gamma (also denoted as \sigma) is the surface tension. Although signs for these values vary, sign convention usually dictates positive curvature when convex and negative when concave. The Laplace pressure is commonly used to determine the pressure difference in spherical shapes such as bubbles or droplets. In this case, R_1 = R_2: : \Delta P = \gamma\frac For a gas bubble within a liquid, there is only one surface. For a gas bubble with a liquid wall, beyond which is again gas, there are t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace Pressure Experimental Demonstration
Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his five-volume ''Mécanique céleste'' (''Celestial Mechanics'') (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace. Laplace formulated Laplace's equation, and pioneered the Laplace transform which appears in many branches of mathematical physics, a field that he took a leading role in forming. The Laplacian differential operator, widely used in mathematics, is also named after him. He restated and developed the nebular hypothesis of the origin of the Solar System and was one of the first scientists to sug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and even by industry. Further, both spellings are often used ''within'' a particular industry or country. Industries in British English-speaking countries typically use the "gauge" spelling. is the pressure relative to the ambient pressure. Various #Units, units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the International System of Units, SI unit of pressure, the Pascal (unit), pascal (Pa), for example, is one newton (unit), newton per square metre (N/m2); similarly, the Pound (force), pound-force per square inch (Pounds per square inch, psi) is the traditional unit of pressure in the imperial units, imperial and United States customary units, U.S. customary systems. Pressure may also be e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface Tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged. At liquid–air interfaces, surface tension results from the greater attraction of liquid molecules to each other (due to cohesion) than to the molecules in the air (due to adhesion). There are two primary mechanisms in play. One is an inward force on the surface molecules causing the liquid to contract. Second is a tangential force parallel to the surface of the liquid. This ''tangential'' force is generally referred to as the surface tension. The net effect is the liquid behaves as if its surface were covered with a stretched elastic membrane. But this analogy must not be taken too far as the tension in an elastic membrane is dependent on the amount of deformation of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Young–Laplace Equation
In physics, the Young–Laplace equation () is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin. The Young–Laplace equation relates the pressure difference to the shape of the surface or wall and it is fundamentally important in the study of static capillary surfaces. It's a statement of normal stress balance for static fluids meeting at an interface, where the interface is treated as a surface (zero thickness): \begin \Delta p &= -\gamma \nabla \cdot \hat n \\ &= -2\gamma H_f \\ &= -\gamma \left(\frac + \frac\right) \end where \Delta p is the Laplace pressure, the pressure difference across the fluid interface (the exterior pressure minus the interior pressure), \gamma is the surface tension (or wall tension), \hat n is the unit no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Curvature
In differential geometry, the two principal curvatures at a given point of a surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how the surface bends by different amounts in different directions at that point. Discussion At each point ''p'' of a differentiable surface in 3-dimensional Euclidean space one may choose a unit '' normal vector''. A '' normal plane'' at ''p'' is one that contains the normal vector, and will therefore also contain a unique direction tangent to the surface and cut the surface in a plane curve, called normal section. This curve will in general have different curvatures for different normal planes at ''p''. The principal curvatures at ''p'', denoted ''k''1 and ''k''2, are the maximum and minimum values of this curvature. Here the curvature of a curve is by definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ostwald Ripening
Ostwald ripening is a phenomenon observed in solid solutions or liquid sols that describes the change of an inhomogeneous structure over time, i.e., small crystals or sol particles dissolve, and redeposit onto larger crystals or sol particles. Dissolution of small crystals or sol particles and the redeposition of the dissolved species on the surfaces of larger crystals or sol particles was first described by Wilhelm Ostwald in 1896. For colloidal systems, Ostwald ripening is also found in water-in-oil emulsions, while flocculation is found in oil-in-water emulsions. Mechanism This thermodynamically-driven spontaneous process occurs because larger particles are more energetically favored than smaller particles. This stems from the fact that molecules on the surface of a particle are energetically less stable than the ones in the interior. Consider a cubic crystal of atoms: all the atoms inside are bonded to 6 neighbours and are quite stable, but atoms on the surface are on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kelvin Equation
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials. It is also used for determination of pore size distribution of a porous medium using adsorption porosimetry. The equation is named in honor of William Thomson, also known as Lord Kelvin. Formulation The original form of the Kelvin equation, published in 1871, is: p(r_1 , r_2) = P - \frac \left ( \frac + \frac \right ), where: * p(r) = vapor pressure at a curved interface of radius r * P = vapor pressure at flat interface ( r = \infty ) = p_ * \gamma = surface tension * \rho _ = density of vapor * \rho _ = density of liquid * r_1 , r_2 = radii of curvature along the principal sections of the curved interface. This may be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laplace Number
The Laplace number (La), also known as the Suratman number (Su), is a dimensionless number used in the characterization of free surface fluid dynamics. It represents a ratio of surface tension to the momentum-transport (especially dissipation) inside a fluid. It is defined as follows: :\mathrm = \mathrm = \frac where: * σ = surface tension * ρ = density * L = length * μ = liquid viscosity Laplace number is related to Reynolds number (Re) and Weber number (We) in the following way: :\mathrm = \frac See also * Ohnesorge number The Ohnesorge number (Oh) is a dimensionless number that relates the viscous forces to inertial and surface tension forces. The number was defined by Wolfgang von Ohnesorge in his 1936 doctoral thesis. It is defined as: : \mathrm = \frac = \fra ... - There is an inverse relationship, \mathrm = \mathrm^, between the Laplace number and the Ohnesorge number. {{DEFAULTSORT:Laplace Number Dimensionless numbers of fluid mechanics Fluid dynamics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Two-balloon Experiment
The two-balloon experiment is an experiment involving interconnected balloons. It is used in physics classes as a demonstration of elasticity. Two identical balloons are inflated to different diameters and connected by means of a tube. The flow of air through the tube is controlled by a valve or clamp. The clamp is then released, allowing air to flow between the balloons. For many starting conditions, the smaller balloon then gets smaller and the balloon with the larger diameter inflates even more. This result is surprising, since most people assume that the two balloons will have equal sizes after exchanging air. The behavior of the balloons in the two-balloon experiment was first explained theoretically by David Merritt and Fred Weinhaus in 1978. Theoretical pressure curve The key to understanding the behavior of the balloons is understanding how the pressure inside a balloon varies with the balloon's diameter. The simplest way to do this is to imagine that the balloon is mad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and even by industry. Further, both spellings are often used ''within'' a particular industry or country. Industries in British English-speaking countries typically use the "gauge" spelling. is the pressure relative to the ambient pressure. Various #Units, units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the International System of Units, SI unit of pressure, the Pascal (unit), pascal (Pa), for example, is one newton (unit), newton per square metre (N/m2); similarly, the Pound (force), pound-force per square inch (Pounds per square inch, psi) is the traditional unit of pressure in the imperial units, imperial and United States customary units, U.S. customary systems. Pressure may also be e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Dynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions of space and ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bubbles (physics)
Bubble, Bubbles or The Bubble may refer to: Common uses * Bubble (physics), a globule of one substance in another, usually gas in a liquid ** Soap bubble * Economic bubble, a situation where asset prices are much higher than underlying fundamentals Arts, entertainment and media Fictional characters * Bubble, a character in ''Absolutely Fabulous'' * Bubbles, an oriole from the ''Angry Birds'' franchise * Bubble, in the video game '' Clu Clu Land'' * Bubbles (''The Wire'') * Bubbles (''Trailer Park Boys'') * Bubbles, a yellow tang fish in the ''Finding Nemo'' franchise * Bubbles, in ''Jabberjaw'' * Bubbles Utonium, in ''The Powerpuff Girls'' ** Bubbles (Miyako Gotokuji), in ''Powerpuff Girls Z'' * Bubbles (''The Adventures of Little Carp'') * Bubbles, in '' The Adventures of Timmy the Tooth'' * Bubbles the Clown, a doll used in the BBC's Test Card F * Cobra Bubbles, in ''Lilo & Stitch'' * Bubbles DeVere, in ''Little Britain'' * Bubbles Yablonsky, the protagonist in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]