Lane Hydrogen Producer
   HOME
*





Lane Hydrogen Producer
The Lane hydrogen producer was an apparatus for hydrogen production based on the steam-iron process and water gas invented in 1903 by British engineer, Howard Lane. History The first commercial Lane hydrogen producer was commissioned in 1904. By 1913, of hydrogen was manufactured annually by this process. In the early-part of the 20th century, the process found some use as a means of producing hydrogen lifting gas for airships, as it could produce large volumes of gas cheaply. Lane producers were installed at some British airship stations so the gas could be manufactured on-site. To work efficiently however, the plant required skilled operators and to be running as a quasi-continuous process. A competing process, referred to as the ''Silicol Process'', reacted Ferrosilicon with a strong Sodium hydroxide solution and had the advantage of flexibility. In the 1940s the Lane process was superseded by cheaper methods of hydrogen production that used oil or natural gas as a feedstock. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen Production
Hydrogen production is the family of industrial methods for generating hydrogen gas. As of 2020, the majority of hydrogen (∼95%) is produced from fossil fuels by steam reforming of natural gas and other light hydrocarbons, partial oxidation of heavier hydrocarbons, and coal gasification. Other methods of hydrogen production include biomass gasification, zero-CO2-emission methane pyrolysis, and electrolysis of water. The latter processes, methane pyrolysis as well as water electrolysis can be done directly with any source of electricity, such as solar power. The production of hydrogen plays a key role in any industrialized society, since hydrogen is required for many essential chemical processes. In 2020, roughly 87 million tons of hydrogen was produced worldwide for various uses, such as oil refining, and in the production of ammonia (NH3) (through the Haber process) and methanol (CH3OH) (through reduction of carbon monoxide O, and also as a fuel in transportation. The glo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Water Gas
Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer okewith air and gasifying it with steam". The caloric yield of this is about 10% of a modern syngas plant. Further making this technology unattractive, its precursor coke is expensive, whereas syngas uses cheaper precursor, mainly methane from natural gas. Production Synthesis gas is made by passing steam over a red-hot carbon fuel such as coke: : (ΔH = +131 kJ/mol) The reaction is endothermic, so the fuel must be continually re-heated to maintain the reaction. To do this, an air stream, which alternates with the vapor stream, is introduced to combust some of the carbon: : (ΔH = -393 kJ/mol) Theoretically, to make 6 L of water gas, 5 L of air is required. Alternatively, to prevent contamination with nitrogen, energy can be provided by using pure oxygen to burn carbon into carbon monoxide. : (ΔH = -221 kJ/mol) In this case, 1&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Airships
An airship or dirigible balloon is a type of aerostat or lighter-than-air aircraft that can navigate through the air Powered aircraft, under its own power. Aerostats gain their lift from a lifting gas that is less dense than the surrounding air. In early dirigibles, the lifting gas used was hydrogen gas, hydrogen, due to its high lifting capacity and ready availability. Helium gas has almost the same lifting capacity and is not flammable, unlike hydrogen, but is rare and relatively expensive. Significant amounts were first discovered in the United States and for a while helium was only available for airships in that country. Most airships built since the 1960s have used helium, though some have used hot air.A few airships after World War II used hydrogen. The first British airship to use helium was the Chitty Bang Bang (airship), ''Chitty Bang Bang'' of 1967. The envelope of an airship may form the gasbag, or it may contain a number of gas-filled cells. An airship also has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ferrosilicon
Ferrosilicon is an alloy of iron and silicon with a typical silicon content by weight of 15–90%. It contains a high proportion of iron silicides. Production and reactions Ferrosilicon is produced by reduction of silica or sand with coke in the presence of iron. Typical sources of iron are scrap iron or millscale. Ferrosilicons with silicon content up to about 15% are made in blast furnaces lined with acid fire bricks. Ferrosilicons with higher silicon content are made in electric arc furnaces. The usual formulations on the market are ferrosilicons with 15%, 45%, 75%, and 90% silicon. The remainder is iron, with about 2% consisting of other elements like aluminium and calcium. An overabundance of silica is used to prevent formation of silicon carbide. Microsilica is a useful byproduct. A mineral perryite is similar to ferrosilicon, with its composition Fe5Si2. In contact with water, ferrosilicon may slowly produce hydrogen. The reaction, which is accelerated in the presenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sodium Hydroxide
Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates . The monohydrate crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound. As one of the simplest hydroxides, sodium hydroxide is frequently used alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students. Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and deterge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Retort
In a chemistry laboratory, a retort is a device used for distillation or dry distillation of substances. It consists of a spherical vessel with a long downward-pointing neck. The liquid to be distilled is placed in the vessel and heated. The neck acts as a condenser, allowing the vapors to condense and flow along the neck to a collection vessel placed underneath. In the chemical industry, a retort is an airtight vessel in which substances are heated for a chemical reaction producing gaseous products to be collected in a collection vessel or for further processing. Such industrial-scale retorts are used in shale oil extraction, the production of charcoal and in the recovery of mercury in gold mining processes and hazardous waste. A process of heating oil shale to produce shale oil, oil shale gas, and spent shale is commonly called retorting. Airtight vessels to apply pressure as well as heat are called autoclaves. In the food industry, pressure cookers are often referred to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Redox
Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. There are two classes of redox reactions: * ''Electron-transfer'' – Only one (usually) electron flows from the reducing agent to the oxidant. This type of redox reaction is often discussed in terms of redox couples and electrode potentials. * ''Atom transfer'' – An atom transfers from one substrate to another. For example, in the rusting of iron, the oxidation state of iron atoms increases as the iron converts to an oxide, and simultaneously the oxidation state of oxygen decreases as it accepts electrons released by the iron. Although oxidation reactions are commonly associated with the formation of oxides, other chemical species can serve the same function. In hydrogen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iron Oxide Cycle
For chemical reactions, the iron oxide cycle (Fe3O4/FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxidation between Fe3+ and Fe2+. The ferrites, or iron oxide, begins in the form of a spinel and depending on the reaction conditions, dopant metals and support material forms either Wüstites or different spinels. Process description The thermochemical two-step water splitting process uses two redox steps. The steps of solar hydrogen production by iron based two-step cycle are: : \begin \ce &\ce \\ \ce & \ce \end Where M can by any number of metals, often Fe itself, Co, Ni, Mn, Zn or mixtures thereof. The endothermic reduction step (1) is carried out at high temperatures greater than , though the "Hercynite cycle" is capable of temperatures as low as . The oxidative water splitting step (2) occurs at a lower ~ temperature which prod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sponge Iron Reaction
The sponge iron reaction (SIR) is a chemical process based on redox cycling of an iron-based contact mass, the first cycle is a conversion step between iron metal (Fe) and wuestite (FeO), the second cycle is a conversion step between wuestite (FeO) and magnetite (Fe3O4). In application, the SIT is used in the reformer sponge iron cycle (RESC) in combination with a steam reforming unit. Process description The process has two modes, a reduction mode and an oxidation mode. Iron-wuestite + ↔ + Magnetite-wuestite + ↔ 3 + Application The reformer sponge iron cycle is a two step cycle to produce hydrogen from hydrocarbon fuels based SIR and steam. Reformer sponge iron cycle In the first step the hydrocarbon fuel is reformed to syngas in the reformer which is then used to reduce the iron oxide (magnetite—Fe3O4) to iron (wüstite—FeO), in the second step steam is utilized to re-oxidise the iron into magnetite and hydrogen. The iron oxide pellets are placed i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Water Gas Shift Reaction
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent). It is vital for all known forms of life, despite not providing food, energy or organic micronutrients. Its chemical formula, H2O, indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. The hydrogen atoms are attached to the oxygen atom at an angle of 104.45°. "Water" is also the name of the liquid state of H2O at standard temperature and pressure. A number of natural states of water exist. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds consist of suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water covers a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Timeline Of Hydrogen Technologies
This is a timeline of the history of hydrogen technology. Timeline 16th century * c. 1520 – First recorded observation of hydrogen by Paracelsus through dissolution of metals (iron, zinc, and tin) in sulfuric acid. 17th century * 1625 – First description of hydrogen by Johann Baptista van Helmont. First to use the word "gas". * 1650 – Turquet de Mayerne obtained a gas or "inflammable air" by the action of dilute sulphuric acid on iron. * 1662 – Boyle's law (gas law relating pressure and volume) * 1670 – Robert Boyle produced hydrogen by reacting metals with acid. * 1672 – "New Experiments touching the Relation between Flame and Air" by Robert Boyle. * 1679 – Denis Papin – safety valve * 1700 – Nicolas Lemery showed that the gas produced in the sulfuric acid/iron reaction was explosive in air 18th century * 1755 – Joseph Black confirmed that different gases exist. / Latent heat * 1766 – Henry Cavendish published in "On Factitious Airs" a description of " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]