L Genus
   HOME
*



picture info

L Genus
In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary (i.e., up to suitable cobordism) to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties. Definition A genus \varphi assigns a number \Phi(X) to each manifold ''X'' such that # \Phi(X \sqcup Y) = \Phi(X) + \Phi(Y) (where \sqcup is the disjoint union); # \Phi(X \times Y) = \Phi(X)\Phi(Y); # \Phi(X) = 0 if ''X'' is the boundary of a manifold with boundary. The manifolds and manifolds with boundary may be required to have additional structure; for example, they might be oriented, spin, stably complex, and so on (see list of cobordism theories for many more examples). The value \Phi(X) is in some ring, often the ring of rati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cobordism
In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French '' bord'', giving ''cobordism'') of a manifold. Two manifolds of the same dimension are ''cobordant'' if their disjoint union is the ''boundary'' of a compact manifold one dimension higher. The boundary of an (''n'' + 1)-dimensional manifold ''W'' is an ''n''-dimensional manifold ∂''W'' that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries. The theory was originally developed by René Thom for smooth manifolds (i.e., differentiable), but there are now also versions for piecewise linear and topological manifolds. A ''cobordism'' between manifolds ''M'' and ''N'' is a compact manifold ''W'' whose boundary is the disjoint union of ''M'' and ''N'', \partial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




René Thom
René Frédéric Thom (; 2 September 1923 – 25 October 2002) was a French mathematician, who received the Fields Medal in 1958. He made his reputation as a topologist, moving on to aspects of what would be called singularity theory; he became world-famous among the wider academic community and the educated general public for one aspect of this latter interest, his work as founder of catastrophe theory (later developed by Erik Christopher Zeeman). Life and career René Thom grow up in a modest family in Montbéliard, Doubs and obtained a Baccalauréat in 1940. After German invasion of France, his family took refuge in Switzerland and then in Lyon. In 1941 he moved to Paris to attend Lycée Saint-Louis and in 1943 he began studying mathematics at École Normale Supérieure, becoming agrégé in 1946. He received his PhD in 1951 from the University of Paris. His thesis, titled ''Espaces fibrés en sphères et carrés de Steenrod'' (''Sphere bundles and Steenrod squares''), was w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spin Manifold
In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry. Overview In geometry and in field theory, mathematicians ask whether or not a given oriented Riemannian manifold (''M'',''g'') admits spinors. One method for dealing with this problem is to require that ''M'' has a spin structure. This is not always possible since there is potentially a topological obstruction to the existence of spin structures. Spin structures will exist if and only if the second Stiefel–Whitney class ''w''2(''M'') ∈ H2(''M'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hirzebruch–Riemann–Roch Theorem
In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemann–Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieck–Hirzebruch–Riemann–Roch theorem proved about three years later. Statement of Hirzebruch–Riemann–Roch theorem The Hirzebruch–Riemann–Roch theorem applies to any holomorphic vector bundle ''E'' on a compact complex manifold ''X'', to calculate the holomorphic Euler characteristic of ''E'' in sheaf cohomology, namely the alternating sum : \chi(X,E) = \sum_^ (-1)^ \dim_ H^(X,E) of the dimensions as complex vector spaces, where ''n'' is the complex dimension of ''X''. Hirzebruch's theorem states that χ(''X'', ''E'') is computable in terms of the Chern classes ''ck''(''E'') of ''E'', and the Todd classes \operatorname_(X) of the holomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Genus
In mathematics, the arithmetic genus of an algebraic variety is one of a few possible generalizations of the genus of an algebraic curve or Riemann surface. Projective varieties Let ''X'' be a projective scheme of dimension ''r'' over a field ''k'', the ''arithmetic genus'' p_a of ''X'' is defined asp_a(X)=(-1)^r (\chi(\mathcal_X)-1).Here \chi(\mathcal_X) is the Euler characteristic of the structure sheaf \mathcal_X. Complex projective manifolds The arithmetic genus of a complex projective manifold of dimension ''n'' can be defined as a combination of Hodge numbers, namely :p_a=\sum_^ (-1)^j h^. When ''n=1'', the formula becomes p_a=h^. According to the Hodge theorem, h^=h^. Consequently h^=h^1(X)/2=g, where ''g'' is the usual (topological) meaning of genus of a surface, so the definitions are compatible. When ''X'' is a compact Kähler manifold, applying ''h''''p'',''q'' = ''h''''q'',''p'' recovers the earlier definition for projective varieties. Kähler manifolds By u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smooth Structure
In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases. A smooth manifold is a topological manifold M together with a smooth structure on M. Maximal smooth atlases By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PL Manifold
PL, P.L., Pl, or .pl may refer to: Businesses and organizations Government and political * Partit Laburista, a Maltese political party * Liberal Party (Brazil, 2006), a Brazilian political party * Liberal Party (Moldova), a Moldovan political party * Liberal Party (Rwanda), a Rwandan political party * Parlamentarische Linke, a parliamentary caucus in Germany * Patriotic League (Bosnia and Herzegovina) (Bosnian: ''Patriotska Liga''), a military organisation of the Republic of Bosnia and Herzegovina * Philippine Legislature, a legislature that existed in the Philippines from 1907 to 1935 * Progressive Labor Party (United States), a United States communist party Sports leagues * Premier League, the top English association football league * Pacific League, one of the two leagues in Japan's Nippon Professional Baseball * Pioneer Baseball League, a Rookie league in Minor League Baseball * Pioneer Football League, NCAA FCS conference Other businesses and organizations * Airstars Air ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook University and one of the five mathematicians to have won the Fields Medal, the Wolf Prize, and the Abel Prize (the others being Serre, Thompson, Deligne, and Margulis.) Early life and career Milnor was born on February 20, 1931, in Orange, New Jersey. His father was J. Willard Milnor and his mother was Emily Cox Milnor. As an undergraduate at Princeton University he was named a Putnam Fellow in 1949 and 1950 and also proved the Fáry–Milnor theorem when he was only 19 years old. Milnor graduated with an A.B. in mathematics in 1951 after completing a senior thesis, titled "Link groups", under the supervision of Robert H. Fox. He remained at Princeton to pursue graduate studies and received his Ph.D. in mathematics in 1954 after completi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hirzebruch Signature Theorem
In differential topology, an area of mathematics, the Hirzebruch signature theorem (sometimes called the Hirzebruch index theorem) is Friedrich Hirzebruch's 1954 result expressing the signature of a smooth closed oriented manifold by a linear combination of Pontryagin numbers called the L-genus. It was used in the proof of the Hirzebruch–Riemann–Roch theorem. Statement of the theorem The L-genus is the genus for the multiplicative sequence of polynomials associated to the characteristic power series : = \sum_ = 1 + - +\cdots . The first two of the resulting L-polynomials are: * L_1 = \tfrac13 p_1 * L_2 = \tfrac1(7p_2 - p_1^2) By taking for the p_i the Pontryagin classes p_i(M) of the tangent bundle of a 4''n'' dimensional smooth closed oriented manifold M one obtains the L-classes of M. Hirzebruch showed that the n-th L-class of M evaluated on the fundamental class of M, /math>, is equal to \sigma(M), the signature of M (i.e. the signature of the intersection form on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intersection Theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signature (topology)
In the field of topology, the signature is an integer invariant which is defined for an oriented manifold ''M'' of dimension divisible by four. This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem. Definition Given a connected and oriented manifold ''M'' of dimension 4''k'', the cup product gives rise to a quadratic form ''Q'' on the 'middle' real cohomology group :H^(M,\mathbf). The basic identity for the cup product :\alpha^p \smile \beta^q = (-1)^(\beta^q \smile \alpha^p) shows that with ''p'' = ''q'' = 2''k'' the product is symmetric. It takes values in :H^(M,\mathbf). If we assume also that ''M'' is compact, Poincaré duality identifies this with :H^(M,\mathbf) which can be identified with \mathbf. Therefore the cup product, under these hypotheses, does give rise to a symmetric bilinear form on ''H''2''k''(''M'',''R''); and therefore to a quadratic form ''Q''. The form ''Q'' is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Class
In mathematics, the fundamental class is a homology class 'M''associated to a connected orientable compact manifold of dimension ''n'', which corresponds to the generator of the homology group H_n(M,\partial M;\mathbf)\cong\mathbf . The fundamental class can be thought of as the orientation of the top-dimensional simplices of a suitable triangulation of the manifold.In past years mathematics.... Definition Closed, orientable When ''M'' is a connected orientable closed manifold of dimension ''n'', the top homology group is infinite cyclic: H_n(M,\mathbf) \cong \mathbf, and an orientation is a choice of generator, a choice of isomorphism \mathbf \to H_n(M,\mathbf). The generator is called the fundamental class. If ''M'' is disconnected (but still orientable), a fundamental class is the direct sum of the fundamental classes for each connected component (corresponding to an orientation for each component). In relation with de Rham cohomology it represents ''integration over M''; na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]