HOME
*





Löb's Theorem
In mathematical logic, Löb's theorem states that in Peano arithmetic (PA) (or any formal system including PA), for any formula ''P'', if it is provable in PA that "if ''P'' is provable in PA then ''P'' is true", then ''P'' is provable in PA. If Prov(''P'') means that the formula ''P'' is provable, we may express this more formally as :If :PA\,\vdash\, :then :PA\,\vdash\,P An immediate corollary (the contrapositive) of Löb's theorem is that, if ''P'' is not provable in PA, then "if ''P'' is provable in PA, then ''P'' is true" is not provable in PA. For example, "If 1+1=3 is provable in PA, then 1+1=3" is not provable in PA. Löb's theorem is named for Martin Hugo Löb, who formulated it in 1955. It is related to Curry's paradox. Löb's theorem in provability logic Provability logic abstracts away from the details of encodings used in Gödel's incompleteness theorems by expressing the provability of \phi in the given system in the language of modal logic, by means of the moda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doxastic Logic
Doxastic logic is a type of logic concerned with reasoning about beliefs. The term ' derives from the Ancient Greek (''doxa'', "opinion, belief"), from which the English term ''doxa'' ("popular opinion or belief") is also borrowed. Typically, a doxastic logic uses the notation \mathcalx to mean "It is believed that x is the case", and the set \mathbb : \left \ denotes a set of beliefs. In doxastic logic, belief is treated as a modal operator. There is complete parallelism between a person who believes propositions and a formal system that derives propositions. Using doxastic logic, one can express the epistemic counterpart of Gödel's incompleteness theorem of metalogic, as well as Löb's theorem, and other metalogical results in terms of belief. Smullyan, Raymond M., (1986''Logicians who reason about themselves'' Proceedings of the 1986 conference on Theoretical aspects of reasoning about knowledge, Monterey (CA), Morgan Kaufmann Publishers Inc., San Francisco (CA), pp. 341â ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In The Foundations Of Mathematics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modal Logic
Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other systems by adding unary operators \Diamond and \Box, representing possibility and necessity respectively. For instance the modal formula \Diamond P can be read as "possibly P" while \Box P can be read as "necessarily P". Modal logics can be used to represent different phenomena depending on what kind of necessity and possibility is under consideration. When \Box is used to represent epistemic necessity, \Box P states that P is epistemically necessary, or in other words that it is known. When \Box is used to represent deontic necessity, \Box P states that P is a moral or legal obligation. In the standard relational semantics for modal logic, formulas are assigned truth values relative to a ''possible world''. A formula's truth value at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eliezer Yudkowsky
Eliezer Shlomo Yudkowsky (born September 11, 1979) is an American decision theory and artificial intelligence (AI) researcher and writer, best known for popularizing the idea of friendly artificial intelligence. He is a co-founder and research fellow at the Machine Intelligence Research Institute (MIRI), a private research nonprofit based in Berkeley, California. His work on the prospect of a runaway intelligence explosion was an influence on Nick Bostrom's '' Superintelligence: Paths, Dangers, Strategies''. Work in artificial intelligence safety Goal learning and incentives in software systems Yudkowsky's views on the safety challenges posed by future generations of AI systems are discussed in the undergraduate textbook in AI, Stuart Russell and Peter Norvig's '' Artificial Intelligence: A Modern Approach''. Noting the difficulty of formally specifying general-purpose goals by hand, Russell and Norvig cite Yudkowsky's proposal that autonomous and adaptive systems be designed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PlanetMath
PlanetMath is a free, collaborative, mathematics online encyclopedia. The emphasis is on rigour, openness, pedagogy, real-time content, interlinked content, and also community of about 24,000 people with various maths interests. Intended to be comprehensive, the project is currently hosted by the University of Waterloo. The site is owned by a US-based nonprofit corporation, "PlanetMath.org, Ltd". PlanetMath was started when the popular free online mathematics encyclopedia MathWorld was temporarily taken offline for 12 months by a court injunction as a result of the CRC Press lawsuit against the Wolfram Research company and its employee (and MathWorld's author) Eric Weisstein. Materials The main PlanetMath focus is on encyclopedic entries. It formerly operated a self-hosted forum, but now encourages discussion via Gitter. , the encyclopedia hosted about 9,289 entries and over 16,258 ''concepts'' (a concept may be for example a specific notion defined within a more general entry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Symbolic Logic
The '' Journal of Symbolic Logic'' is a peer-reviewed mathematics journal published quarterly by Association for Symbolic Logic. It was established in 1936 and covers mathematical logic. The journal is indexed by '' Mathematical Reviews'', Zentralblatt MATH, and Scopus. Its 2009 MCQ was 0.28, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... was 0.631. External links * Mathematics journals Publications established in 1936 Multilingual journals Quarterly journals Association for Symbolic Logic academic journals Logic journals Cambridge University Press academic journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Modal Logic
In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautologies; * All instances of the Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed under: * Detachment rule (''modus ponens''): A\to B, A \in L implies B \in L; * Necessitation rule: A \in L implies \Box A \in L. The smallest logic satisfying the above conditions is called K. Most modal logics commonly used nowadays (in terms of having philosophical motivations), e.g. C. I. Lewis's S4 and S5, are normal (and hence are extensions of K). However a number of deontic and epistemic logic Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applica ...s, for example, are non-normal, often because they give up the Kripke schema. Every normal modal logic is regular and hen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Raymond Smullyan
Raymond Merrill Smullyan (; May 25, 1919 – February 6, 2017) was an American mathematician, magician, concert pianist, logician, Taoist, and philosopher. Born in Far Rockaway, New York, his first career was stage magic. He earned a BSc from the University of Chicago in 1955 and his PhD from Princeton University in 1959. He is one of many logicians to have studied with Alonzo Church. Life He was born on May 25, 1919, in Far Rockaway, Queens, New York, to an Ashkenazi Jewish family. His father was Isidore Smullyan, who was born in Russia but who emigrated to Belgium when young, and whose native language was French. His father was a businessman who graduated from the University of Antwerp. His mother was Rosina Smullyan (née Freeman), who was born and raised in London. She was a painter, who was also an actress. Both parents were musical, his father playing the violin and his mother playing the piano. He was the youngest of three children. His eldest brother, Emile Benoit Smul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paris–Harrington Theorem
In mathematical logic, the Paris–Harrington theorem states that a certain combinatorial principle in Ramsey theory, namely the strengthened finite Ramsey theorem, is true, but not provable in Peano arithmetic. This has been described by some (such as the editor of the ''Handbook of Mathematical Logic'' in the references below) as the first "natural" example of a true statement about the integers that could be stated in the language of arithmetic, but not proved in Peano arithmetic; it was already known that such statements existed by Gödel's first incompleteness theorem. Strengthened finite Ramsey theorem The strengthened finite Ramsey theorem is a statement about colorings and natural numbers and states that: : For any positive integers ''n'', ''k'', ''m'', such that ''m ≥ n'', one can find ''N'' with the following property: if we color each of the ''n''-element subsets of ''S'' = with one of ''k'' colors, then we can find a subset ''Y'' of ''S'' with at least ''m'' elements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithmetice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]