HOME
*





Lottery Mathematics
Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement. Choosing 6 from 49 In a typical 6/49 game, each player chooses six distinct numbers from a range of 1-49. If the six numbers on a ticket match the numbers drawn by the lottery, the ticket holder is a jackpot winner— regardless of the order of the numbers. The probability of this happening is 1 in 13,983,816. The chance of winning can be demonstrated as follows: The first number drawn has a 1 in 49 chance of matching. When the draw comes to the second number, there are now only 48 balls left in the bag, because the balls are drawn without replacement. So there is now a 1 in 48 chance of predicting this number. Thus for each of the 49 ways of choosing the first number there are 48 different ways of choosing the second. This means that the probability of correctly predicting 2 nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probabilities
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These conce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lottery Math
Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement. Choosing 6 from 49 In a typical 6/49 game, each player chooses six distinct numbers from a range of 1-49. If the six numbers on a ticket match the numbers drawn by the lottery, the ticket holder is a jackpot winner— regardless of the order of the numbers. The probability of this happening is 1 in 13,983,816. The chance of winning can be demonstrated as follows: The first number drawn has a 1 in 49 chance of matching. When the draw comes to the second number, there are now only 48 balls left in the bag, because the balls are drawn without replacement. So there is now a 1 in 48 chance of predicting this number. Thus for each of the 49 ways of choosing the first number there are 48 different ways of choosing the second. This means that the probability of correctly predicting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads H and tails T) in a sample space (e.g., the set \) to a measurable space, often the real numbers (e.g., \ in which 1 corresponding to H and -1 corresponding to T). Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory, a random vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Information Content
In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome. As it is such a basic quantity, it also appears in several other settings, such as the length of a message needed to transmit the event given an optimal source coding of the random variable. The Shannon information is closely related to ''entropy'', which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Theory
Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering (field), information engineering, and electrical engineering. A key measure in information theory is information entropy, entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process. For example, identifying the outcome of a fair coin flip (with two equally likely outcomes) provides less information (lower entropy) than specifying the outcome from a roll of a dice, die (with six equally likely outcomes). Some other important measures in information theory are mutual informat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Axioms
The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. An alternative approach to formalising probability, favoured by some Bayesians, is given by Cox's theorem. Axioms The assumptions as to setting up the axioms can be summarised as follows: Let (\Omega, F, P) be a measure space with P(E) being the probability of some event E'','' and P(\Omega) = 1. Then (\Omega, F, P) is a probability space, with sample space \Omega, event space F and probability measure P. First axiom The probability of an event is a non-negative real number: :P(E)\in\mathbb, P(E)\geq 0 \qquad \forall E \in F where F is the event space. It follows that P(E) is always finite, in contrast with more general measure theory. Theories which assign negative probability relax the first axiom. Second axiom This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Event (probability Theory)
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. An event consisting of only a single outcome is called an or an ; that is, it is a singleton set. An event S is said to if S contains the outcome x of the experiment (or trial) (that is, if x \in S). The probability (with respect to some probability measure) that an event S occurs is the probability that S contains the outcome x of an experiment (that is, it is the probability that x \in S). An event defines a complementary event, namely the complementary set (the event occurring), and together these define a Bernoulli trial: did the event occur or not? Typically, when the sample space is finite, any subset of the sample space is an event (that is, all e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atom (measure Theory)
In mathematics, more precisely in measure theory, an atom is a measurable set which has positive measure and contains no set of smaller positive measure. A measure which has no atoms is called non-atomic or atomless. Definition Given a measurable space (X, \Sigma) and a measure \mu on that space, a set A\subset X in \Sigma is called an atom if \mu(A) > 0 and for any measurable subset B \subset A with \mu(B) of A are atoms, and /math> is called an atomic class. If \mu is a \sigma-finite measure, there are countably many atomic classes. Examples * Consider the set ''X'' = and let the sigma-algebra \Sigma be the power set of ''X''. Define the measure \mu of a set to be its cardinality, that is, the number of elements in the set. Then, each of the singletons , for ''i'' = 1, 2, ..., 9, 10 is an atom. * Consider the Lebesgue measure on the real line. This measure has no atoms. Atomic measures A \sigma-finite measure \mu on a measurable space (X, \Sigma) is called atomic or pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outcome (probability)
In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible ''outcomes'' that make up our ''sample space'' are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails". Outcomes should not be confused with ''events'', which are (or informally, "groups") of outcomes. For comparison, we could define an event to occur when "at least one 'heads'" is flipped in the experiment - that is, when the outcome contains at least one 'heads'. This event would contain all outcomes in the sample space except the element (T, T). Sets of outcomes: events Since individual outcomes may be of little practical interest, or becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements:Stroock, D. W. (1999). Probability theory: an analytic view. Cambridge University Press. # A sample space, \Omega, which is the set of all possible outcomes. # An event space, which is a set of events \mathcal, an event being a set of outcomes in the sample space. # A probability function, which assigns each event in the event space a probability, which is a number between 0 and 1. In order to provide a sensible model of probability, these elements must satisfy a number of axioms, detailed in this article. In the example of the throw of a standard die, we would take the sample space to be \. For the event space, we could simply use the set of all subsets of the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Measure
In mathematics, more precisely in measure theory, a measure on the real line is called a discrete measure (in respect to the Lebesgue measure) if it is concentrated on an at most countable set. The support need not be a discrete set. Geometrically, a discrete measure (on the real line, with respect to Lebesgue measure) is a collection of point masses. Definition and properties A measure \mu defined on the Lebesgue measure, Lebesgue measurable sets of the real line with values in , \infty/math> is said to be discrete if there exists a (possibly finite) sequence of numbers : s_1, s_2, \dots \, such that : \mu(\mathbb R\backslash\)=0. The simplest example of a discrete measure on the real line is the Dirac delta function \delta. One has \delta(\mathbb R\backslash\)=0 and \delta(\)=1. More generally, if s_1, s_2, \dots is a (possibly finite) sequence of real numbers, a_1, a_2, \dots is a sequence of numbers in , \infty/math> of the same length, one can consider the Dir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]