HOME
*





Local Hidden-variable Theory
In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the condition of being consistent with local realism. This includes all types of the theory that attempt to account for the probabilistic features of quantum mechanics by the mechanism of underlying inaccessible variables, with the additional requirement from local realism that distant events be independent, ruling out ''instantaneous'' (that is, faster-than-light) interactions between separate events. The mathematical implications of a local hidden-variable theory in regard to the phenomenon of quantum entanglement were explored by physicist John Stewart Bell, who in 1964 proved that broad classes of local hidden-variable theories cannot reproduce the correlations between measurement outcomes that quantum mechanics predicts. The most notable exception is superdeterminism. Superdeterministic hidden-variable theories can be local and yet be compatible with observati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interpretations Of Quantum Mechanics
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters. Despite nearly a century of debate and experiment, no consensus has been reached among physicists and philosophers of physics concerning which interpretation best "represents" reality. History The definition of quantum theorists' terms, such as ''wave function'' and ''matrix mechanics'', progressed through many stages. For instance, Erwin Schrödinger originally viewed the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Bohm
David Joseph Bohm (; 20 December 1917 – 27 October 1992) was an American-Brazilian-British scientist who has been described as one of the most significant theoretical physicists of the 20th centuryPeat 1997, pp. 316-317 and who contributed unorthodox ideas to quantum theory, neuropsychology and the philosophy of mind. Among his many contributions to physics is his causal and deterministic interpretation of quantum theory, now known as De Broglie–Bohm theory. Bohm advanced the view that quantum physics meant that the old Cartesian model of reality—that there are two kinds of substance, the mental and the physical, that somehow interact—was too limited. To complement it, he developed a mathematical and physical theory of "implicate" and "explicate" order.David Bohm: ''Wholeness and the Implicate Order'', Routledge, 1980 (). He also believed that the brain, at the cellular level, works according to the mathematics of some quantum effects, and postulated that thought is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bohr–Einstein Debates
The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr. Their debates are remembered because of their importance to the philosophy of science, since the disagreements and the outcome of Bohr's version of quantum mechanics that became the prevalent view form the root of the modern understanding of physics. Most of Bohr's version of the events held in Solvay in 1927 and other places was first written by Bohr decades later in an article titled, "Discussions with Einstein on Epistemological Problems in Atomic Physics". From Albert Einstein: Philosopher-Scientist (1949), publ. Cambridge University Press, 1949. Niels Bohr's report of conversations with Einstein. Based on the article, the philosophical issue of the debate was whether Bohr's Copenhagen Interpretation of quantum mechanics, which centered on his belief of complementarity, was valid in explaining nature. Despite their differences of opinion and the succeed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


EPR Paradox
EPR may refer to: Science and technology * EPR (nuclear reactor), European Pressurised-Water Reactor * EPR paradox (Einstein–Podolsky–Rosen paradox), in physics * Earth potential rise, in electrical engineering * East Pacific Rise, a mid-oceanic ridge * Electron paramagnetic resonance * Engine pressure ratio,of a jet engine * Ethylene propylene rubber * Yevpatoria RT-70 radio telescope (Evpatoria planetary radar) * Bernays–Schönfinkel class or effectively propositional, in mathematical logic * Endpoint references in Web addressing * Ethnic Power Relations, dataset of ethnic groups * ePrivacy Regulation (ePR), proposal for the regulation of various privacy-related topics, mostly in relation to electronic communications within the European Union Medicine * Enhanced permeability and retention effect, a controversial concept in cancer research * Emergency Preservation and Resuscitation, a medical procedure * Electronic patient record Environment * UNECE Environmental Perform ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


POVM
In functional analysis and quantum measurement theory, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalisation of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalisation of quantum measurement described by PVMs (called projective measurements). In rough analogy, a POVM is to a PVM what a mixed state is to a pure state. Mixed states are needed to specify the state of a subsystem of a larger system (see purification of quantum state); analogously, POVMs are necessary to describe the effect on a subsystem of a projective measurement performed on a larger system. POVMs are the most general kind of measurement in quantum mechanics, and can also be used in quantum field theory. They are extensively used in the field of quantum information. Definition In the simplest case, of a POVM with a finite number of elements acting on a f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Werner State
A Werner state is a -dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form U \otimes U. That is, it is a bipartite quantum state \rho_ that satisfies :\rho_ = (U \otimes U) \rho_ (U^\dagger \otimes U^\dagger) for all unitary operators ''U'' acting on ''d''-dimensional Hilbert space. These states were first developed by Reinhard F. Werner in 1989. General definition Every Werner state W_^ is a mixture of projectors onto the symmetric and antisymmetric subspaces, with the relative weight p \in ,1/math> being the main parameter that defines the state, in addition to the dimension d \geq 2: :W_^ = p \frac P^\text_ + (1-p) \frac P^\text_, where :P^\text_ = \frac(I_+F_), :P^\text_ = \frac(I_-F_), are the projectors and :F_ = \sum_ , i\rangle \langle j, _A \otimes , j\rangle \langle i, _B is the permutation or flip operator that exchanges the two subsystems ''A'' and ''B''. Werner states are separable for ''p'' ≥ and entangl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review A
''Physical Review A'' (also known as PRA) is a monthly peer-reviewed scientific journal published by the American Physical Society covering atomic, molecular, and optical physics and quantum information. the editor was Jan M. Rost (Max Planck Institute for the Physics of Complex Systems). History In 1893, the ''Physical Review'' was established at Cornell University. It was taken over by the American Physical Society (formed in 1899) in 1913. In 1970, ''Physical Review'' was subdivided into ''Physical Review A'', ''B'', ''C'', and ''D''. At that time section ''A'' was subtitled ''Physical Review A: General Physics''. In 1990 a process was started to split this journal into two, resulting in the creation of ''Physical Review E'' in 1993. Hence, in 1993, ''Physical Review A'' changed its statement of scope to ''Atomic, Molecular and Optical Physics.'' In January 2007, the section of ''Physical Review E'' that published papers on classical optics was merged into ''Physical Review ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measurement In Quantum Mechanics
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic. The mathematical tools for making predictions about what measurement outcomes may occur were developed during the 20th century and make use of linear algebra and functional analysis. Quantum physics has proven to be an empirical success and to have wide-ranging applicability. However, on a more philosophical level, debates continue about the meaning of the measurement concept. Mathematical formalism "Observables" as self-adjoint operators In quantum mechanics, each physical system is associated with a Hilbert space, each element of which represents a possible state of the physical system. The approach codified by John von Neumann represents a measurement upon a physical system by a self-adjoint operator on that Hilbert space termed an "observable". These observables play the role of measurable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable State
In quantum mechanics, separable states are quantum states belonging to a composite space that can be factored into individual states belonging to separate subspaces. A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard. Separability of bipartite systems Consider first composite states with two degrees of freedom, referred to as ''bipartite states''. By a postulate of quantum mechanics these can be described as vectors in the tensor product space H_1\otimes H_2. In this discussion we will focus on the case of the Hilbert spaces H_1 and H_2 being finite-dimensional. Pure states Let \_^n\subset H_1 and \_^m \subset H_2 be orthonormal bases for H_1 and H_2, respectively. A basis for H_1 \otimes H_2 is then \, or in more compact notation \. From the very definition of the tensor product, any vector of norm 1, i.e. a pure state of the composite system, can be written a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CHSH Bell Test
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics can not be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint on the statistical occurrence of "coincidences" in a Bell test which is necessarily true if there exist underlying local hidden variables, an assumption that is sometimes termed local realism. It is in fact the case that the inequality is routinely violated by modern experiments in quantum mechanics. Statement The usual form of the CHSH inequality is where ''a'' and ''a''′ are detector settin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clauser And Horne's 1974 Bell Test
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of quantum entanglement, entanglement in quantum mechanics can not be reproduced by local hidden-variable theory, local hidden-variable theories. Experimental verification of the inequality being violated is seen as experimental confirmation, confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne (physicist), Michael Horne, Abner Shimony, and Richard Holt (physicist), Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint on the statistical occurrence of "coincidences" in a Bell test which is necessarily true if there exist underlying local hidden variables, an assumption that is sometimes termed local realism. It is in fact the case that the inequality is routinely violated by modern experiments ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]