HOME
*





Load Factor (electrical)
In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. It is a measure of the utilization rate, or efficiency of electrical energy usage; a high load factor indicates that load is using the electric system more efficiently, whereas consumers or generators that underutilize the electric distribution will have a low load factor. f_ = \frac An example, using a large commercial electrical bill: * peak demand = * use = * number of days in billing cycle = Hence: * load factor = ( / / ) × 100% = 18.22% It can be derived from the load profile of the specific device or system of devices. Its value is always less than one because maximum demand is never lower than average demand, since facilities likely never operate at full capacity for the duration of an entire 24-hour day. A high load factor means power usage is relatively constant. Low load factor shows that occasionally a high demand is set. To service ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Engineering
Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use. Electrical engineering is now divided into a wide range of different fields, including computer engineering, systems engineering, power engineering, telecommunications, radio-frequency engineering, signal processing, instrumentation, photovoltaic cells, electronics, and optics and photonics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics/control, and electrical m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Economic Review
The ''American Economic Review'' is a monthly peer-reviewed academic journal published by the American Economic Association. First published in 1911, it is considered one of the most prestigious and highly distinguished journals in the field of economics. The current editor-in-chief is Esther Duflo, an economic professor at the Massachusetts Institute of Technology. The journal is based in Pittsburgh. In 2004, the ''American Economic Review'' began requiring "data and code sufficient to permit replication" of a paper's results, which is then posted on the journal's website. Exceptions are made for proprietary data. Until 2017, the May issue of the ''American Economic Review'', titled the ''Papers and Proceedings'' issue, featured the papers presented at the American Economic Association's annual meeting that January. After being selected for presentation, the papers in the ''Papers and Proceedings'' issue did not undergo a formal process of peer review. Starting in 2018, papers pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Economic Association
The American Economic Association (AEA) is a learned society in the field of economics. It publishes several peer-reviewed journals acknowledged in business and academia. There are some 23,000 members. History and Constitution The AEA was established in 1885 in Saratoga Springs, New York by younger progressive economists trained in the German historical school, including Richard T. Ely, Edwin Robert Anderson Seligman and Katharine Coman, the only woman co-founder; since 1900 it has been under the control of academics. The purposes of the Association are: 1) The encouragement of economic research, especially the historical and statistical study of the actual conditions of industrial life; 2) The issue of publications on economic subjects; 3) The encouragement of perfect freedom of economic discussion. The Association as such will take no partisan attitude, nor will it commit its members to any position on practical economic questions. The Association publishes one of the most pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Load Profile
In electrical engineering, a load profile is a graph of the variation in the electrical load versus time. A load profile will vary according to customer type (typical examples include residential, commercial and industrial), temperature and holiday seasons. Power producers use this information to plan how much electricity they will need to make available at any given time. Teletraffic engineering uses a similar load curve. Power generation In a power system, a load curve or load profile is a chart illustrating the variation in demand/electrical load over a specific time. Generation companies use this information to plan how much power they will need to generate at any given time. A load duration curve is similar to a load curve. The information is the same but is presented in a different form. These curves are useful in the selection of generator units for supplying electricity. Electricity distribution In an electricity distribution grid, the load profile of electricity u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Load Balancing (electrical Power)
Load balancing, load matching, or daily peak demand reserve refers to the use of various techniques by electrical power stations to store excess electrical power during low demand periods for release as demand rises. The aim is for the power supply system to have a load factor of 1. Grid energy storage stores electricity within the transmission grid beyond the customer. Alternatively, the storage can be distributed and involve the customer, for example in storage heaters running demand-response tariffs such as the United Kingdom's Economy 7, or in a vehicle-to-grid system to use storage from electric vehicles during peak times and then replenish it during off peak times. These require incentives for consumers to participate, usually by offering cheaper rates for off peak electricity. Batteries and smart grid Telephone exchanges often have arrays of batteries in their basements to power equipment and in the past metro systems such as the London Underground had their own power ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Demand Factor
In telecommunication, electronics and the electrical power industry, the term demand factor is used to refer to the fractional amount of some quantity being used relative to the maximum amount that could be used by the same system. The demand factor is always less than or equal to one. As the amount of demand is a time dependent quantity so is the demand factor. : f_\text(t) = \frac The demand factor is often implicitly averaged over time when the time period of demand is understood by the context. Electrical engineering In electrical engineering the demand factor is taken as a time independent quantity where the numerator is taken as the maximum demand in the specified time period instead of the averaged or instantaneous demand. : f_\text = \frac This is the peak in the load profile divided by the full load of the device. Example: If a residence has equipment which could draw 6,000 W when all equipment was drawing a full load, drew a maximum of 3,000 W in a specified time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Availability Factor
The availability factor of a power plant is the amount of time that it is able to produce electricity over a certain period, divided by the amount of the time in the period. Occasions where only partial capacity is available may or may not be deducted. Where they are deducted, the metric is titled ''equivalent availability factor'' (EAF). The availability factor should not be confused with the capacity factor. The capacity factor for a given period can never exceed the availability factor for the same period. The difference arises when the plant is run at less than full capacity, in which case the capacity factor is less than the availability factor. The availability of a power plant varies greatly depending on the type of fuel, the design of the plant and how the plant is operated. Everything else being equal, plants that are run less frequently have higher availability factors because they require less maintenance and because more inspections and maintenance can be scheduled duri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Capacity Factor
The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period. The capacity factor can be calculated for any electricity producing installation, such as a fuel consuming power plant or one using renewable energy, such as wind or the sun. The average capacity factor can also be defined for any class of such installations, and can be used to compare different types of electricity production. The actual energy output during that period and the capacity factor vary greatly depending on a range of factors. The capacity factor can never exceed the availability factor, or uptime during the period. Uptime can be reduced due to, for example, reliability issues and maintenance, scheduled or unscheduled. Other fact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Demand Factor
In telecommunication, electronics and the electrical power industry, the term demand factor is used to refer to the fractional amount of some quantity being used relative to the maximum amount that could be used by the same system. The demand factor is always less than or equal to one. As the amount of demand is a time dependent quantity so is the demand factor. : f_\text(t) = \frac The demand factor is often implicitly averaged over time when the time period of demand is understood by the context. Electrical engineering In electrical engineering the demand factor is taken as a time independent quantity where the numerator is taken as the maximum demand in the specified time period instead of the averaged or instantaneous demand. : f_\text = \frac This is the peak in the load profile divided by the full load of the device. Example: If a residence has equipment which could draw 6,000 W when all equipment was drawing a full load, drew a maximum of 3,000 W in a specified time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diversity Factor
In the context of electricity, the diversity factor is the ratio of the sum of the individual non-coincident maximum loads of various subdivisions of the system to the maximum demand of the complete system. : f_\text = \frac The diversity factor is always greater than 1. The aggregate load \left( \sum\limits_^n\text_i \right) is time dependent as well as being dependent upon equipment characteristics. The diversity factor recognizes that the whole load does not equal the sum of its parts due to this time interdependence or "diversity." For example, one might have ten air conditioning units that are 20 tons each at a facility with an average full load equivalent operating hours of 2000 hours per year. However, since the units are each thermostatically controlled, it is not known exactly when each unit turns on. If the ten units are substantially larger than the facility's actual peak AC load, then fewer than all ten units will likely come on at once. Thus, even though each unit run ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Utilization Factor
The utilization factor or use factor is the ratio of the time that a piece of equipment is in use to the total time that it could be in use. It is often averaged over time in the definition such that the ratio becomes the amount of energy used divided by the maximum possible to be used. These definitions are equivalent. Electrical engineering In electrical engineering, ''utilization factor'', k_\text , is the ratio of the maximum load which could be drawn to the rated capacity of the system. This is closely related to the concept of Load factor. The Load factor is the ratio of the load that a piece of equipment actually draws (time averaged) when it is in operation to the load it could draw (which we call full load). For example, an oversized motor - 15 kW - drives a constant 12 kW load whenever it is on. The motor load factor is then 12/15 = 80%. The motor above may only be used for eight hours a day, 50 weeks a year. The hours of operation would then be 2800 hours, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]