Lnp1
The natural logarithm of a number is its logarithm to the base (exponentiation), base of the mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if the base is implicit, simply . Parentheses are sometimes added for clarity, giving , , or . This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity. The natural logarithm of is the exponentiation, power to which would have to be raised to equal . For example, is , because . The natural logarithm of itself, , is , because , while the natural logarithm of is , since . The natural logarithm can be defined for any positive real number as the Integral, area under the curve from to (with the area being negative when ). The simplicity of this definition, which is matched in many other formulas involving the natural lo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics". The exponential function satisfies the exponentiation identity e^ = e^x e^y \text x,y\in\mathbb, which, along with the definition e = \exp(1), shows that e^n=\underbrace_ for positi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Law
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a proportional relative change in the other quantity, independent of the initial size of those quantities: one quantity varies as a power of another. For instance, considering the area of a square in terms of the length of its side, if the length is doubled, the area is multiplied by a factor of four. Empirical examples The distributions of a wide variety of physical, biological, and man-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, the foraging pattern of various species, the sizes of activity patterns of neuronal populations, the frequencies of words in most languages, frequencies of family names, the species richness in clades of organisms, the sizes of power outages, volcanic eruptions, human judgments of stimulus intensity and many other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Programming Language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning), which are usually defined by a formal language. Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant Programming language implementation, implementation that is treated as a reference implementation, reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common. Programming language theory is the subfield of computer science that studies the design, implementation, analysis, characterization, and classification of programming lan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Speidell
John Speidell ( fl. 1600–1634) was an English mathematician. He is known for his early work on the calculation of logarithms. Speidell was a mathematics teacher in London and one of the early followers of the work John Napier had previously done on natural logarithms. In 1619 Speidell published a table entitled "New Logarithmes" in which he calculated the natural logarithms of sines, tangents, and secants. He then diverged from Napier's methods in order to ensure all of the logarithms were positive. A new edition of "New Logarithmes" was published in 1622 and contained an appendix with the natural logarithms of all numbers 1-1000. Along with William Oughtred and Richard Norwood, Speidell helped push toward the abbreviations of trigonometric functions. Speidel published a number of work about mathematics, including ''An Arithmeticall Extraction'' in 1628. His son, Euclid Speidell Euclid Speidell (died 1702) was an English customs official and mathematics teacher known for his w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nicholas Mercator
Nicholas (Nikolaus) Mercator (c. 1620, Holstein – 1687, Versailles), also known by his German name Kauffmann, was a 17th-century mathematician. He was born in Eutin, Schleswig-Holstein, Germany and educated at Rostock and Leyden after which he lived from 1642 to 1648 in the Netherlands. He lectured at the University of Copenhagen during 1648–1654 and lived in Paris from 1655 to 1657. He was mathematics tutor to Joscelyne Percy, son of the 10th Earl of Northumberland, at Petworth, Sussex (1657). He taught mathematics in London (1658–1682). On 3 May 1661 he observed a transit of Mercury with Christiaan Huygens and Thomas Streete from Long Acre, London. On 14 November 1666 he was elected a Fellow of the Royal Society. He designed a marine chronometer for Charles II. In 1682 Jean Colbert invited Mercator to assist in the design and construction of the fountains at the Palace of Versailles, so he relocated there, but a falling out with Colbert followed. Mathematically, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Sector
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points and on the rectangular hyperbola , or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has and . Hyperbolic sectors are the basis for the hyperbolic functions. Area The area of a hyperbolic sector in standard position is natural logarithm of ''b'' . Proof: Integrate under 1/''x'' from 1 to ''b'', add triangle , and subtract triangle . When in standard position, a hyperbolic sector corresponds to a positive hyperbolic angle at the origin, with the measure of the latter being defined as the area of the former. Hyperbolic triangle When in standard position, a hyperbolic sector determines a hyperbolic triangle, the right triangle with one vertex at the origin, base on the dia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola. Hyperbolas arise in many ways: * as the curve representing the reciprocal function y(x) = 1/x in the Cartesian plane, * as the path followed by the shadow of the tip of a sundial, * as the shape of an open orbit (as distinct from a closed elliptical orbit), such as the orbit of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadrature (mathematics)
In mathematics, quadrature is a historical term which means the process of determining area. This term is still used nowadays in the context of differential equations, where "solving an equation by quadrature" or "reduction to quadrature" means expressing its solution in terms of integrals. Quadrature problems served as one of the main sources of problems in the development of calculus, and introduce important topics in mathematical analysis. History Antiquity Greek mathematicians understood the determination of an area of a figure as the process of geometrically constructing a square having the same area (''squaring''), thus the name ''quadrature'' for this process. The Greek geometers were not always successful (see squaring the circle), but they did carry out quadratures of some figures whose sides were not simply line segments, such as the lune of Hippocrates and the parabola. By a certain Greek tradition, these constructions had to be performed using only a compass and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Historia Mathematica
''Historia Mathematica: International Journal of History of Mathematics'' is an academic journal on the history of mathematics published by Elsevier. It was established by Kenneth O. May in 1971 as the free newsletter ''Notae de Historia Mathematica'', but by its sixth issue in 1974 had turned into a full journal. The International Commission on the History of Mathematics began awarding the Montucla Prize, for the best article by an early career scholar in ''Historia Mathematica'', in 2009. The award is given every four years. Editors The editors of the journal have been: * Kenneth O. May, 1974–1977 * Joseph W. Dauben, 1977–1985 * Eberhard Knobloch, 1985–1994 * David E. Rowe, 1994–1996 * Karen Hunger Parshall, 1996–2000 * Craig Fraser and Umberto Bottazzini, 2000–2004 * Craig Fraser, 2004–2007 * Benno van Dalen, 2007–2009 * June Barrow-Green and Niccolò Guicciardini, 2010–2013 * Niccolò Guicciardini and Tom Archibald, 2013-2015 * Tom Archibald and R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alphonse Antonio De Sarasa
Alphonse Antonio de Sarasa was a Jesuit mathematician who contributed to the understanding of logarithms, particularly as areas under a hyperbola. Alphonse de Sarasa was born in 1618, in Nieuwpoort in Flanders. In 1632 he was admitted as a novice in Ghent. It was there that he worked alongside Gregoire de Saint-Vincent whose ideas he developed, exploited, and promulgated. According to Sommervogel, Alphonse de Sarasa also held academic positions in Antwerp and Brussels. In 1649 Alphonse de Sarasa published ''Solutio problematis a R.P. Marino Mersenne Minimo propositi''. This book was in response to Marin Mersenne's pamphlet "Reflexiones Physico-mathematicae" which reviewed Saint-Vincent's ''Opus Geometricum'' and posed this challenge: : Given three arbitrary magnitudes, rational or irrational, and given the logarithms of the two, to find the logarithm of the third geometrically. R.P. BurnR. P. Burn (2001) "Alphonse Antonio de Sarasa and Logarithms", Historia Mathematica 28:1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |