HOME
*



picture info

List Of Polygons
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its ''edges'' or ''sides'', and the points where two of the edges meet are the polygon's '' vertices'' (singular: vertex) or ''corners''. The word ''polygon'' comes from Late Latin ''polygōnum'' (a noun), from Greek πολύγωνον (''polygōnon/polugōnon''), noun use of neuter of πολύγωνος (''polygōnos/polugōnos'', the masculine adjective), meaning "many-angled". Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix ''-gon'', e.g. '' pentagon'', ''dodecagon''. The triangle, quadrilateral and nonagon are exceptions, although the regular forms ''trigon'', ''tetragon'', and ''enneagon'' are sometimes encountered as well. Greek numbers Polygons are primarily named by prefixes from Ancient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Polygon 5 Annotated
The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instruments, tunings with equal intervals between the paired notes of successive open strings Other uses in arts, entertainment, and media * Regular character, a main character who appears more frequently and/or prominently than a recurring character * Regular division of the plane, a series of drawings by the Dutch artist M. C. Escher which began in 1936 * ''Regular Show'', an animated television sitcom * ''The Regular Guys'', a radio morning show Language * Regular inflection, the formation of derived forms such as plurals in ways that are typical for the language ** Regular verb * Regular script, the newest of the Chinese script styles Mathematics There are an extremely large number of unrelated notions of "regularity" in mathematics. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digon
In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space. A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol . It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated ''digon'', t is a square, . An alternated digon, h is a monogon, . In Euclidean geometry The digon can have one of two visual representations if placed in Euclidean space. One representation is degenerate, and visually appears as a double-covering of a line segment. Appearing when the minimum distance between the two edges is 0, this form arises in several situations. This double-covering form is sometimes used for defining degener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pentadecagon
In geometry, a pentadecagon or pentakaidecagon or 15-gon is a fifteen-sided polygon. Regular pentadecagon A '' regular pentadecagon'' is represented by Schläfli symbol . A regular pentadecagon has interior angles of 156 °, and with a side length ''a'', has an area given by : \begin A = \fraca^2 \cot \frac & = \frac\sqrta^2 \\ & = \frac \left( \sqrt+\sqrt+ \sqrt\sqrt \right) \\ & \simeq 17.6424\,a^2. \end Construction As 15 = 3 × 5, a product of distinct Fermat primes, a regular pentadecagon is constructible using compass and straightedge: The following constructions of regular pentadecagons with given circumcircle are similar to the illustration of the proposition XVI in Book IV of Euclid's ''Elements''. Compare the construction according Euclid in this imagePentadecagon In the construction for given circumcircle: \overline = \overline\text \; \ov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrakaidecagon
In geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon. Regular tetradecagon A '' regular tetradecagon'' has Schläfli symbol and can be constructed as a quasiregular truncated heptagon, t, which alternates two types of edges. The area of a regular tetradecagon of side length ''a'' is given by :A = \fraca^2\cot\frac \approx 15.3345a^2 Construction As 14 = 2 × 7, a regular tetradecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis with use of the angle trisector, or with a marked ruler, as shown in the following two examples. Symmetry The ''regular tetradecagon'' has Dih14 symmetry, order 28. There are 3 subgroup dihedral symmetries: Dih7, Dih2, and Dih1, and 4 cyclic group symmetries: Z14, Z7, Z2, and Z1. These 8 symmetries can be seen in 10 distinct symmetries on the tetradecagon, a larger number because the lines of reflections can either pass through vertices or edges. John C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetradecagon
In geometry, a tetradecagon or tetrakaidecagon or 14-gon is a fourteen-sided polygon. Regular tetradecagon A '' regular tetradecagon'' has Schläfli symbol and can be constructed as a quasiregular truncated heptagon, t, which alternates two types of edges. The area of a regular tetradecagon of side length ''a'' is given by :A = \fraca^2\cot\frac \approx 15.3345a^2 Construction As 14 = 2 × 7, a regular tetradecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis with use of the angle trisector, or with a marked ruler, as shown in the following two examples. Symmetry The ''regular tetradecagon'' has Dih14 symmetry, order 28. There are 3 subgroup dihedral symmetries: Dih7, Dih2, and Dih1, and 4 cyclic group symmetries: Z14, Z7, Z2, and Z1. These 8 symmetries can be seen in 10 distinct symmetries on the tetradecagon, a larger number because the lines of reflections can either pass through vertices or edges. John C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triskaidecagon
In geometry, a tridecagon or triskaidecagon or 13-gon is a thirteen-sided polygon. Regular tridecagon A '' regular tridecagon'' is represented by Schläfli symbol . The measure of each internal angle of a regular tridecagon is approximately 152.308 degrees, and the area with side length ''a'' is given by :A = \fraca^2 \cot \frac \simeq 13.1858\,a^2. Construction As 13 is a Pierpont prime but not a Fermat prime, the regular tridecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisector. The following is an animation from a ''neusis construction'' of a regular tridecagon with radius of circumcircle \overline = 12, according to Andrew M. Gleason, based on the angle trisection by means of the Tomahawk (light blue). An approximate construction of a regular tridecagon using straightedge and compass is shown here. Another possible animation of an approximate construction, also possible with using stra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tridecagon
In geometry, a tridecagon or triskaidecagon or 13-gon is a thirteen-sided polygon. Regular tridecagon A '' regular tridecagon'' is represented by Schläfli symbol . The measure of each internal angle of a regular tridecagon is approximately 152.308 degrees, and the area with side length ''a'' is given by :A = \fraca^2 \cot \frac \simeq 13.1858\,a^2. Construction As 13 is a Pierpont prime but not a Fermat prime, the regular tridecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisector. The following is an animation from a ''neusis construction'' of a regular tridecagon with radius of circumcircle \overline = 12, according to Andrew M. Gleason, based on the angle trisection by means of the Tomahawk (light blue). An approximate construction of a regular tridecagon using straightedge and compass is shown here. Another possible animation of an approximate construction, also possible with using straightedg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Undecagon
In geometry, a hendecagon (also undecagon or endecagon) or 11-gon is an eleven-sided polygon. (The name ''hendecagon'', from Greek ''hendeka'' "eleven" and ''–gon'' "corner", is often preferred to the hybrid ''undecagon'', whose first part is formed from Latin ''undecim'' "eleven".) Regular hendecagon A '' regular hendecagon'' is represented by Schläfli symbol . A regular hendecagon has internal angles of 147. degrees (=147 \tfrac degrees). The area of a regular hendecagon with side length ''a'' is given by. :A = \fraca^2 \cot \frac \simeq 9.36564\,a^2. As 11 is not a Fermat prime, the regular hendecagon is not constructible with compass and straightedge. Because 11 is not a Pierpont prime, construction of a regular hendecagon is still impossible even with the usage of an angle trisector. Close approximations to the regular hendecagon can be constructed. For instance, the ancient Greek mathematicians approximated the side length of a hendecagon inscribed in a unit circl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hendecagon
In geometry, a hendecagon (also undecagon or endecagon) or 11-gon is an eleven-sided polygon. (The name ''hendecagon'', from Greek ''hendeka'' "eleven" and ''–gon'' "corner", is often preferred to the hybrid ''undecagon'', whose first part is formed from Latin ''undecim'' "eleven".) Regular hendecagon A '' regular hendecagon'' is represented by Schläfli symbol . A regular hendecagon has internal angles of 147. degrees (=147 \tfrac degrees). The area of a regular hendecagon with side length ''a'' is given by. :A = \fraca^2 \cot \frac \simeq 9.36564\,a^2. As 11 is not a Fermat prime, the regular hendecagon is not constructible with compass and straightedge. Because 11 is not a Pierpont prime, construction of a regular hendecagon is still impossible even with the usage of an angle trisector. Close approximations to the regular hendecagon can be constructed. For instance, the ancient Greek mathematicians approximated the side length of a hendecagon inscribed in a unit circl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decagon
In geometry, a decagon (from the Greek δέκα ''déka'' and γωνία ''gonía,'' "ten angles") is a ten-sided polygon or 10-gon.. The total sum of the interior angles of a simple decagon is 1440°. A self-intersecting ''regular decagon'' is known as a decagram. Regular decagon A '' regular decagon'' has all sides of equal length and each internal angle will always be equal to 144°. Its Schläfli symbol is and can also be constructed as a truncated pentagon, t, a quasiregular decagon alternating two types of edges. Side length The picture shows a regular decagon with side length a and radius R of the circumscribed circle. * The triangle E_E_1M has to equally long legs with length R and a base with length a * The circle around E_1 with radius a intersects ]M\,E_ _in_a_point_P_(not_designated_in_the_picture)._ *_Now_the_triangle_\;_is_a_isosceles_triangle.html" ;"title="/math> in a point P (not designated in the picture). * Now the triangle \; is a isosceles triang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enneagon
In geometry, a nonagon () or enneagon () is a nine-sided polygon or 9-gon. The name ''nonagon'' is a prefix hybrid formation, from Latin (''nonus'', "ninth" + ''gonon''), used equivalently, attested already in the 16th century in French ''nonogone'' and in English from the 17th century. The name ''enneagon'' comes from Greek ''enneagonon'' (εννεα, "nine" + γωνον (from γωνία = "corner")), and is arguably more correct, though less common than "nonagon". Regular nonagon A '' regular nonagon'' is represented by Schläfli symbol and has internal angles of 140°. The area of a regular nonagon of side length ''a'' is given by :A = \fraca^2\cot\frac=(9/2)ar = 9r^2\tan(\pi/9) :::= (9/2)R^2\sin(2\pi/9)\simeq6.18182\,a^2, where the radius ''r'' of the inscribed circle of the regular nonagon is :r=(a/2)\cot(\pi/9) and where ''R'' is the radius of its circumscribed circle: :R = \sqrt=r\sec(\pi/9). Construction Although a regular nonagon is not constructible with compa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octagon
In geometry, an octagon (from the Greek ὀκτάγωνον ''oktágōnon'', "eight angles") is an eight-sided polygon or 8-gon. A '' regular octagon'' has Schläfli symbol and can also be constructed as a quasiregular truncated square, t, which alternates two types of edges. A truncated octagon, t is a hexadecagon, . A 3D analog of the octagon can be the rhombicuboctahedron with the triangular faces on it like the replaced edges, if one considers the octagon to be a truncated square. Properties of the general octagon The sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°. If squares are constructed all internally or all externally on the sides of an octagon, then the midpoints of the segments connecting the centers of opposite squares form a quadrilateral that is both equidiagonal and orthodiagonal (that is, whose diagonals are equal in length and at right angles to each other).Dao Thanh Oai (2015), "Equilatera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]