List Of Harmonic Analysis Topics
This is a list of harmonic analysis topics. See also list of Fourier analysis topics and list of Fourier-related transforms, which are more directed towards the classical Fourier series and Fourier transform of mathematical analysis, mathematical physics and engineering. Fourier analysis Fourier series *Periodic function *Trigonometric function *Trigonometric polynomial **Exponential sum * Dirichlet kernel * Fejér kernel *Gibbs phenomenon * Parseval's identity *Parseval's theorem * Weyl differintegral *Generalized Fourier series **Orthogonal functions **Orthogonal polynomials ** Empirical orthogonal functions * Set of uniqueness Fourier transform *Continuous Fourier transform * Fourier inversion theorem * Plancherel's theorem *Convolution *Convolution theorem *Positive-definite function *Poisson summation formula * Paley-Wiener theorem *Sobolev space *Time–frequency representation *Quantum Fourier transform Topological groups *Topological abelian group *Haar measure *Discre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals. Generalizing these transforms to other domains is generally called Fourier analysis, although the term is sometimes used interchangeably with harmonic analysis. Harmonic analysis has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis, spectral analysis, and neuroscience. The term "harmonics" originated from the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are integer multiples of one another, as are the freq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parseval's Theorem
In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series. It is also known as Rayleigh's energy theorem, or Rayleigh's identity, after John William Strutt, Lord Rayleigh. Although the term "Parseval's theorem" is often used to describe the unitarity of ''any'' Fourier transform, especially in physics, the most general form of this property is more properly called the Plancherel theorem. Statement of Parseval's theorem Suppose that A(x) and B(x) are two complex-valued functions on \mathbb of period 2 \pi that are square integrable (with respect to the Lebesgue measure) over intervals of period length, with Fourier series :A(x)=\sum_^\infty a_ne^ and :B(x)=\sum_^\infty b_ne^ respecti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Summation Formula
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function (mathematics), function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation. For a smooth, complex valued function s(x) on \mathbb R which decays at infinity with all derivatives (Schwartz function), the simplest version of the Poisson summation formula states that where S is the Fourier transform of s, i.e., S(f) \triangleq \int_^ s(x)\ e^\, dx. The summation formula can be restated in many equivalent ways, but a simple one is the following. Sup ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive-definite Function
In mathematics, a positive-definite function is, depending on the context, either of two types of function. Definition 1 Let \mathbb be the set of real numbers and \mathbb be the set of complex numbers. A function f: \mathbb \to \mathbb is called ''positive semi-definite'' if for all real numbers ''x''1, …, ''x''''n'' the ''n'' × ''n'' matrix : A = \left(a_\right)_^n~, \quad a_ = f(x_i - x_j) is a positive ''semi-''definite matrix. By definition, a positive semi-definite matrix, such as A, is Hermitian; therefore ''f''(−''x'') is the complex conjugate of ''f''(''x'')). In particular, it is necessary (but not sufficient) that : f(0) \geq 0~, \quad , f(x), \leq f(0) (these inequalities follow from the condition for ''n'' = 1, 2.) A function is ''negative semi-definite'' if the inequality is reversed. A function is ''definite'' if the weak inequality is replaced with a strong ( 0). Examples If (X, \langle \cdot, \cdot \rangle) is a real inner prod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convolution Theorem
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain). Other versions of the convolution theorem are applicable to various Fourier-related transforms. Functions of a continuous variable Consider two functions u(x) and v(x) with Fourier transforms U and V: :\begin U(f) &\triangleq \mathcal\(f) = \int_^u(x) e^ \, dx, \quad f \in \mathbb\\ V(f) &\triangleq \mathcal\(f) = \int_^v(x) e^ \, dx, \quad f \in \mathbb \end where \mathcal denotes the Fourier transform operator. The transform may be normalized in other ways, in which case constant scaling factors (typically 2\pi or \sqrt) will appear in the convolution theorem below. The convolution of u and v is defined by: :r(x) = \(x) \triangleq \int_^ u(\tau) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The term ''convolution'' refers to both the resulting function and to the process of computing it. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). Graphically, it expresses how the 'shape' of one function is modified by the other. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution f*g differs from cross-correlation f \star g only in that either f(x) or g(x) is reflected about the y-axis in convolution; thus i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plancherel's Theorem
In mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It is a generalization of Parseval's theorem; often used in the fields of science and engineering, proving the unitarity of the Fourier transform. The theorem states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if f(x) is a function on the real line, and \widehat(\xi) is its frequency spectrum, then Formal definition The Fourier transform of an ''L''''1'' function f on the real line \mathbb R is defined as the Lebesgue integral \hat f(\xi) = \int_ f(x)e^dx. If f belongs to both L^1 and L^2, then the Plancherel theorem states that \hat f also belongs to L^2, and the Fourier transform is an isometry with respect to the ''L''2 norm, which is to say that \int_^\infty , f(x), ^2 \, dx = \int_^\infty , \widehat(\xi), ^2 \, d\xi Thi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourier Inversion Theorem
In mathematics, the Fourier inversion theorem says that for many types of functions it is possible to recover a function from its Fourier transform. Intuitively it may be viewed as the statement that if we know all frequency and phase information about a wave then we may reconstruct the original wave precisely. The theorem says that if we have a function f:\R \to \Complex satisfying certain conditions, and we use the convention for the Fourier transform that :(\mathcalf)(\xi):=\int_ e^ \, f(y)\,dy, then :f(x)=\int_ e^ \, (\mathcalf)(\xi)\,d\xi. In other words, the theorem says that :f(x)=\iint_ e^ \, f(y)\,dy\,d\xi. This last equation is called the Fourier integral theorem. Another way to state the theorem is that if R is the flip operator i.e. (Rf)(x) := f(-x), then :\mathcal^=\mathcalR=R\mathcal. The theorem holds if both f and its Fourier transform are absolutely integrable (in the Lebesgue sense) and f is continuous at the point x. However, even under more gener ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function (mathematics), function as input then outputs another function that describes the extent to which various Frequency, frequencies are present in the original function. The output of the transform is a complex number, complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the Operation (mathematics), mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical Chord (music), chord into the sound intensity, intensities of its constituent Pitch (music), pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the #Uncertainty principle, uncerta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Of Uniqueness
In mathematics, a set of uniqueness is a concept relevant to trigonometric expansions which are not necessarily Fourier series. Their study is a relatively pure branch of harmonic analysis. Definition A subset ''E'' of the circle is called a set of uniqueness, or a ''U''-set, if any trigonometric expansion :\sum_^c(n)e^ which converges to zero for t\notin E is identically zero; that is, such that :''c''(''n'') = 0 for all ''n''. Otherwise, ''E'' is a set of multiplicity (sometimes called an ''M''-set or a Menshov set). Analogous definitions apply on the real line, and in higher dimensions. In the latter case, one needs to specify the order of summation, e.g. "a set of uniqueness with respect to summing over balls". To understand the importance of the definition, it is important to get out of the Fourier mind-set. In Fourier analysis there is no question of uniqueness, since the coefficients ''c''(''n'') are derived by integrating the function. Hence, in Fourier analysis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empirical Orthogonal Functions
In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data. The term is also interchangeable with the geographically weighted Principal components analysis in geophysics. The ''i'' th basis function is chosen to be orthogonal to the basis functions from the first through ''i'' − 1, and to minimize the residual variance. That is, the basis functions are chosen to be different from each other, and to account for as much variance as possible. The method of EOF analysis is similar in spirit to harmonic analysis, but harmonic analysis typically uses predetermined orthogonal functions, for example, sine and cosine functions at fixed frequencies. In some cases the two methods may yield essentially the same results. The basis functions are typically found by computing the eigenvectors of the covariance matrix of the data set. A mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ... to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. These are frequently given by the Rodrigues' formula. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |