List Of Algebraic Surfaces
   HOME
*





List Of Algebraic Surfaces
This is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Kodaira dimension −∞ Rational surfaces * Projective plane Quadric surfaces *Cone (geometry) *Cylinder *Ellipsoid *Hyperboloid *Paraboloid *Sphere *Spheroid Rational cubic surfaces * Cayley nodal cubic surface, a certain cubic surface with 4 nodes * Cayley's ruled cubic surface * Clebsch surface or Klein icosahedral surface * Fermat cubic * Monkey saddle * Parabolic conoid * Plücker's conoid * Whitney umbrella Rational quartic surfaces * Châtelet surfaces * Dupin cyclides, inversions of a cylinder, torus, or double cone in a sphere * Gabriel's horn * Right circular conoid * Roman surface or Steiner surface, a realization of the real projective plane in real affine space * Tori, surfaces of revolution generated by a circle about a coplanar axis Other rational surfaces in space * Boy's s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one varieties are classified by only the topological genus, but dimension two, the difference between the arithmetic genus p_a and the geometric genus p_g turns to be important because we cannot distinguish birationally only the topological genus. Then we introduce the irregularity for the classification of them. A summary of the results (in det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Cubic
In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by : x^3 + y^3 + z^3 = 1. \ Methods of algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ... provide the following parameterization of Fermat's cubic: : x(s,t) = : y(s,t) = : z(s,t) = . In projective space the Fermat cubic is given by :w^3+x^3+y^3+z^3=0. The 27 lines lying on the Fermat cubic are easy to describe explicitly: they are the 9 lines of the form (''w'' : ''aw'' : ''y'' : ''by'') where ''a'' and ''b'' are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates. ::::''Real points of Fermat cubic surface.'' References * * Algebraic surfaces {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boy's Surface
In geometry, Boy's surface is an immersion of the real projective plane in 3-dimensional space found by Werner Boy in 1901. He discovered it on assignment from David Hilbert to prove that the projective plane ''could not'' be immersed in 3-space. Boy's surface was first parametrized explicitly by Bernard Morin in 1978. Another parametrization was discovered by Rob Kusner and Robert Bryant.. Boy's surface is one of the two possible immersions of the real projective plane which have only a single triple point. Unlike the Roman surface and the cross-cap, it has no other singularities than self-intersections (that is, it has no pinch-points). Symmetry of the Boy's surface Boy's surface has 3-fold symmetry. This means that it has an axis of discrete rotational symmetry: any 120° turn about this axis will leave the surface looking exactly the same. The Boy's surface can be cut into three mutually congruent pieces. Model at Oberwolfach The Mathematical Research Institute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead ''displacement vectors'', also called ''translation'' vectors or simply ''translations'', between two points of the space. Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. Any vector space may be viewed as an affine spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Projective Plane
In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in passing through the origin. The plane is also often described topologically, in terms of a construction based on the Möbius strip: if one could glue the (single) edge of the Möbius strip to itself in the correct direction, one would obtain the projective plane. (This cannot be done in three-dimensional space without the surface intersecting itself.) Equivalently, gluing a disk along the boundary of the Möbius strip gives the projective plane. Topologically, it has Euler characteristic 1, hence a demigenus (non-orientable genus, Euler genus) of 1. Since the Möbius strip, in turn, can be constructed from a square by glui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roman Surface
In mathematics, the Roman surface or Steiner surface is a self-intersecting mapping of the real projective plane into three-dimensional space, with an unusually high degree of symmetry. This mapping is not an immersion of the projective plane; however, the figure resulting from removing six singular points is one. Its name arises because it was discovered by Jakob Steiner when he was in Rome in 1844. The simplest construction is as the image of a sphere centered at the origin under the map f(x,y,z)=(yz,xz,xy). This gives an implicit formula of : x^2 y^2 + y^2 z^2 + z^2 x^2 - r^2 x y z = 0. \, Also, taking a parametrization of the sphere in terms of longitude () and latitude (), gives parametric equations for the Roman surface as follows: :x=r^ \cos \theta \cos \varphi \sin \varphi :y=r^ \sin \theta \cos \varphi \sin \varphi :z=r^ \cos \theta \sin \theta \cos^ \varphi The origin is a triple point, and each of the -, -, and -planes are tangential to the surface there. The ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gabriel's Horn
Gabriel's horn (also called Torricelli's trumpet) is a particular geometric figure that has infinite surface area but finite volume. The name refers to the Christian tradition where the archangel Gabriel blows the horn to announce Judgment Day. The properties of this figure were first studied by Italian physicist and mathematician Evangelista Torricelli in the 17th century. These colourful informal names and the allusion to religion came along later. Torricelli's own name for it is to be found in the Latin title of his paper , written in 1643, a truncated acute hyperbolic solid, cut by a plane. Volume 1, part 1 of his published the following year included that paper and a second more orthodox (for the time) Archimedean proof of its theorem about the volume of a truncated acute hyperbolic solid. This name was used in mathematical dictionaries of the 18th century (including "Hyperbolicum Acutum" in Harris' 1704 dictionary and in Stone's 1726 one, and the Fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dupin Cyclide
In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered by (and named after) Charles Dupin in his 1803 dissertation under Gaspard Monge. The key property of a Dupin cyclide is that it is a channel surface (envelope of a one-parameter family of spheres) in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry. Dupin cyclides are often simply known as ''cyclides'', but the latter term is also used to refer to a more general class of quartic surfaces which are important in the theory of separation of variables for the Laplace equation in three dimensions. Dupin cyclides were investigated not only by Dupin, but also by A. Cayley, J.C. Maxwell and Mabel M. Young. Dupin cyclides are used in computer-aided design because cyclide patches have rational representations and are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Châtelet Surface
In algebraic geometry, a Châtelet surface is a rational surface studied by given by an equation :y^2-az^2=P(x), \, where ''P'' has degree 3 or 4. They are conic bundle In algebraic geometry, a conic bundle is an algebraic variety that appears as a solution of a Cartesian equation of the form : X^2 + aXY + b Y^2 = P (T).\, Theoretically, it can be considered as a Severi–Brauer surface, or more precisely as ...s. References * * {{DEFAULTSORT:Chatelet Surface Algebraic surfaces Complex surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quartic Surface
In mathematics, especially in algebraic geometry, a quartic surface is a surface defined by an equation of degree 4. More specifically there are two closely related types of quartic surface: affine and projective. An ''affine'' quartic surface is the solution set of an equation of the form :f(x,y,z)=0\ where is a polynomial of degree 4, such as . This is a surface in affine space . On the other hand, a projective quartic surface is a surface in projective space of the same form, but now is a ''homogeneous'' polynomial of 4 variables of degree 4, so for example . If the base field is or the surface is said to be ''real'' or ''complex'' respectively. One must be careful to distinguish between algebraic Riemann surfaces, which are in fact quartic curves over , and quartic surfaces over . For instance, the Klein quartic is a ''real'' surface given as a quartic curve over . If on the other hand the base field is finite, then it is said to be an ''arithmetic quartic surfa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whitney Umbrella
frame, Section of the surface In geometry, the Whitney umbrella (or Whitney's umbrella, named after American mathematician Hassler Whitney, and sometimes called a Cayley umbrella) is a specific self-intersecting ruled surface placed in three dimensions. It is the union of all straight lines that pass through points of a fixed parabola and are perpendicular to a fixed straight line which is parallel to the axis of the parabola and lies on its perpendicular bisecting plane. Formulas Whitney's umbrella can be given by the parametric equations in Cartesian coordinates : \left\{\begin{align} x(u, v) &= uv, \\ y(u, v) &= u, \\ z(u, v) &= v^2, \end{align}\right. where the parameters ''u'' and ''v'' range over the real numbers. It is also given by the implicit equation : x^2 - y^2 z = 0. This formula also includes the negative ''z'' axis (which is called the ''handle'' of the umbrella). Properties Whitney's umbrella is a ruled surface and a right conoid. It is important in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]