List Of Intel Xeon Processors (Kaby Lake-based)
"Kaby Lake-S" (14 nm) * All models support: '' MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, FMA3, F16C, BMI1 (Bit Manipulation Instructions1), BMI2, MPX, SGX, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), TXT, Intel vPro, Intel VT-x, Intel VT-d, Hyper-threading (except E3-1220 v6, E3-1225 v6), Turbo Boost 2.0, AES-NI, Smart Cache, TSX-NI, ECC memory Xeon E3-12xx v6 (uniprocessor) "Kaby Lake Kaby Lake is Intel's codename for its seventh generation Core microprocessor family announced on August 30, 2016. Like the preceding Skylake, Kaby Lake is produced using a 14 nanometer manufacturing process technology. Breaking with Intel's ...-H" (14 nm) Xeon E3-15xx v6 (uniprocessor) References * * * * * * * {{refend Intel Xeon (Kaby Lake) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kaby Lake
Kaby Lake is Intel's codename for its seventh generation Core microprocessor family announced on August 30, 2016. Like the preceding Skylake, Kaby Lake is produced using a 14 nanometer manufacturing process technology. Breaking with Intel's previous " tick–tock" manufacturing and design model, Kaby Lake represents the optimized step of the newer process–architecture–optimization model. Kaby Lake began shipping to manufacturers and OEMs in the second quarter of 2016, and mobile chips have started shipping while Kaby Lake (desktop) chips were officially launched in January 2017. In August 2017, Intel announced Kaby Lake Refresh ( Kaby Lake R) marketed as the 8th generation mobile CPUs, breaking the long cycle where architectures matched the corresponding generations of CPUs. Skylake was anticipated to be succeeded by the 10 nanometer Cannon Lake, but it was announced in July 2015 that Cannon Lake had been delayed until the second half of 2017. In the meantime, Intel re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trusted Execution Technology
Intel Trusted Execution Technology (Intel TXT, formerly known as LaGrande Technology) is a computer hardware technology whose primary goals are: * Attestation of the authenticity of a platform and its operating system. * Assuring that an authentic operating system starts in a trusted environment, which can then be considered trusted. * Provision of a trusted operating system with additional security capabilities not available to an unproven one. Intel TXT uses a Trusted Platform Module (TPM) and cryptographic techniques to provide measurements of software and platform components so that system software as well as local and remote management applications may use those measurements to make trust decisions. It complements Intel Management Engine. This technology is based on an industry initiative by the Trusted Computing Group (TCG) to promote safer computing. It defends against software-based attacks aimed at stealing sensitive information by corrupting system or BIOS code, or mod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CPU Socket
In computer hardware, a CPU socket or CPU slot contains one or more mechanical components providing mechanical and electrical connections between a microprocessor and a printed circuit board (PCB). This allows for placing and replacing the central processing unit (CPU) without soldering. Common sockets have retention clips that apply a constant force, which must be overcome when a device is inserted. For chips with many pins, zero insertion force (ZIF) sockets are preferred. Common sockets include Pin Grid Array (PGA) or Land Grid Array (LGA). These designs apply a compression force once either a handle (PGA type) or a surface plate (LGA type) is put into place. This provides superior mechanical retention while avoiding the risk of bending pins when inserting the chip into the socket. Certain devices use Ball Grid Array (BGA) sockets, although these require soldering and are generally not considered user replaceable. CPU sockets are used on the motherboard in desktop and serv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermal Design Power
The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component (often a CPU, GPU or system on a chip) that the cooling system in a computer is designed to dissipate under any workload. Some sources state that the peak power rating for a microprocessor is usually 1.5 times the TDP rating. Intel has introduced a new metric called ''scenario design power'' (SDP) for some Ivy Bridge Y-series processors. Calculation The ''average CPU power'' (ACP) is the power consumption of central processing units, especially server processors, under "average" daily usage as defined by Advanced Micro Devices (AMD) for use in its line of processors based on the K10 microarchitecture ( Opteron 8300 and 2300 series processors). Intel's thermal design power (TDP), used for Pentium and Core 2 processors, measures the energy consumption under high workload; it is numerically somewhat higher than the "average" ACP rat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CPU Cache
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1. The cache memory is typically implemented with static random-access memory (SRAM), in modern CPUs by far the largest part of them by chip area, but SRAM is not always used for all levels (of I- or D-cache), or even any level, sometimes some latter or all levels are implemented with eDRAM. Other types of caches exist (that are not counted towards the "cache size" of the most important caches mentioned above), such as the translation lookaside buffer (TLB) which is part of the memory management unit (MMU) w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intel Turbo Boost
Intel Turbo Boost is Intel's trade name for central processing units (CPUs) dynamic frequency scaling feature that automatically raises certain versions of its operating frequency when demanding tasks are running, thus enabling a higher resulting performance. The frequency is accelerated when the operating system requests the highest performance state of the processor. Processor performance states are defined by the Advanced Configuration and Power Interface (ACPI) specification, an open standard supported by all major operating systems; no additional software or drivers are required to support the technology. The design concept behind Turbo Boost is commonly referred to as "dynamic overclocking". When the workload on the processor calls for faster performance, the processor's clock will try to increase the operating frequency in regular increments as required to meet demand. The increased clock rate is limited by the processor's power, current, and thermal limits, the number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ECC Memory
Error correction code memory (ECC memory) is a type of computer data storage that uses an error correction code (ECC) to detect and correct n-bit data corruption which occurs in memory. ECC memory is used in most computers where data corruption cannot be tolerated, like industrial control applications, critical databases, and infrastructural memory caches. Typically, ECC memory maintains a memory system immune to single-bit errors: the data that is read from each word is always the same as the data that had been written to it, even if one of the bits actually stored has been flipped to the wrong state. Most non-ECC memory cannot detect errors, although some non-ECC memory with parity support allows detection but not correction. Description Error correction codes protect against undetected data corruption and are used in computers where such corruption is unacceptable, examples being scientific and financial computing applications, or in database and file servers. ECC can als ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transactional Synchronization Extensions
Transactional Synchronization Extensions (TSX), also called Transactional Synchronization Extensions New Instructions (TSX-NI), is an extension to the x86 instruction set architecture (ISA) that adds hardware transactional memory support, speeding up execution of multi-threaded software through lock elision. According to different benchmarks, TSX/TSX-NI can provide around 40% faster applications execution in specific workloads, and 4–5 times more database transactions per second (TPS). TSX/TSX-NI was documented by Intel in February 2012, and debuted in June 2013 on selected Intel microprocessors based on the Haswell (microarchitecture), Haswell microarchitecture. Haswell processors below 45xx as well as R-series and K-series (with unlocked multiplier) Stock keeping unit, SKUs do not support TSX/TSX-NI. In August 2014, Intel announced a bug in the TSX/TSX-NI implementation on current steppings of Haswell, Haswell-E, Haswell-EP and early Broadwell (microarchitecture), Broadwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AES Instruction Set
An Advanced Encryption Standard instruction set is now integrated into many processors. The purpose of the instruction set is to improve the speed and security of applications performing encryption and decryption using Advanced Encryption Standard (AES). They are often implemented as instructions implementing a single round of AES along with a special version for the last round which has a slightly different method. The side channel attack surface of AES is reduced when implemented in an instruction set, compared to when AES is implemented in software only. x86 architecture processors AES-NI (or the Intel Advanced Encryption Standard New Instructions; AES-NI) was the first major implementation. AES-NI is an extension to the x86 instruction set architecture for microprocessors from Intel and AMD proposed by Intel in March 2008. Instructions Intel The following Intel processors support the AES-NI instruction set: * Westmere based processors, specifically: ** Westmere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turbo Boost
Intel Turbo Boost is Intel's trade name for central processing units (CPUs) dynamic frequency scaling feature that automatically raises certain versions of its operating frequency when demanding tasks are running, thus enabling a higher resulting performance. The frequency is accelerated when the operating system requests the highest performance state of the processor. Processor performance states are defined by the Advanced Configuration and Power Interface (ACPI) specification, an open standard supported by all major operating systems; no additional software or drivers are required to support the technology. The design concept behind Turbo Boost is commonly referred to as "dynamic overclocking". When the workload on the processor calls for faster performance, the processor's clock will try to increase the operating frequency in regular increments as required to meet demand. The increased clock rate is limited by the processor's power, current, and thermal limits, the number of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyper-threading
Hyper-threading (officially called Hyper-Threading Technology or HT Technology and abbreviated as HTT or HT) is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations (doing multiple tasks at once) performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others. For each processor core that is physically present, the operating system addresses two virtual (logical) cores and shares the workload between them when possible. The main function of hyper-threading is to increase the number of independent instructions in the pipeline; it takes advantage of superscalar architecture, in which multiple instructions operate on separate data in parallel. With HTT, one physical core appears as two processors to the operating system, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intel VT-d
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel (VT-x) and AMD ( AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limited ac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |