HOME
*



picture info

Liouville
Joseph Liouville (; ; 24 March 1809 – 8 September 1882) was a French mathematician and engineer. Life and work He was born in Saint-Omer in France on 24 March 1809. His parents were Claude-Joseph Liouville (an army officer) and Thérèse Liouville (née Balland). Liouville gained admission into the École Polytechnique in 1825 and graduated in 1827. Just like Augustin-Louis Cauchy before him, Liouville studied engineering at École des Ponts et Chaussées after graduating from the Polytechnique, but opted instead for a career in mathematics. After some years as an assistant at various institutions including the École Centrale Paris, he was appointed as professor at the École Polytechnique in 1838. He obtained a chair in mathematics at the Collège de France in 1850 and a chair in mechanics at the Faculté des Sciences in 1857. Besides his academic achievements, he was very talented in organisational matters. Liouville founded the ''Journal de Mathématiques Pures et A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Liouville Number
In number theory, a Liouville number is a real number ''x'' with the property that, for every positive integer ''n'', there exists a pair of integers (''p, q'') with ''q'' > 1 such that :0 1 + \log_2(d) ~) no pair of integers ~(\,p,\,q\,)~ exists that simultaneously satisfies the pair of bracketing inequalities :0 0 ~, then, since c\,q - d\,p is an integer, we can assert the sharper inequality \left, c\,q - d\,p \ \ge 1 ~. From this it follows that :\left, x - \frac\= \frac \ge \frac Now for any integer ~n > 1 + \log_2(d)~, the last inequality above implies :\left, x - \frac \ \ge \frac > \frac \ge \frac ~. Therefore, in the case ~ \left, c\,q - d\,p \ > 0 ~ such pair of integers ~(\,p,\,q\,)~ would violate the ''second'' inequality in the definition of a Liouville number, for some positive integer . We conclude that there is no pair of integers ~(\,p,\,q\,)~, with ~ q > 1 ~, that would qualify such an ~ x = c / d ~, as a Liouville number. Hence a Liouville number, if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm–Liouville Theory
In mathematics and its applications, classical Sturm–Liouville theory is the theory of ''real'' second-order ''linear'' ordinary differential equations of the form: for given coefficient functions , , and , an unknown function ''y = y''(''x'') of the free variable , and an unknown constant λ. All homogeneous (i.e. with the right-hand side equal to zero) second-order linear ordinary differential equations can be reduced to this form. In addition, the solution is typically required to satisfy some boundary conditions at extreme values of ''x''. Each such equation () together with its boundary conditions constitutes a Sturm–Liouville problem. In the simplest case where all coefficients are continuous on the finite closed interval and has continuous derivative, a function ''y = y''(''x'') is called a ''solution'' if it is continuously differentiable and satisfies the equation () at every x\in (a,b). In the case of more general , , , the solutions must be understood in a weak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liouville's Theorem (complex Analysis)
In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844), states that every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that , f(z), \leq M for all z in \Complex is constant. Equivalently, non-constant holomorphic functions on \Complex have unbounded images. The theorem is considerably improved by Picard's little theorem, which says that every entire function whose image omits two or more complex numbers must be constant. Proof This important theorem has several proofs. A standard analytical proof uses the fact that holomorphic functions are analytic. Another proof uses the mean value property of harmonic functions. The proof can be adapted to the case where the harmonic function f is merely bounded above or below. See Harmonic function#Liouville's theorem. Corollaries Fundamental theorem of algebra There is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendental Number
In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classes of transcendental numbers are known—partly because it can be extremely difficult to show that a given number is transcendental—transcendental numbers are not rare. Indeed, almost all real and complex numbers are transcendental, since the algebraic numbers comprise a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set. All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic. The converse is not true: not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping rational, algebrai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Liouville's Equation
:''For Liouville's equation in dynamical systems, see Liouville's theorem (Hamiltonian).'' : ''For Liouville's equation in quantum mechanics, see Von Neumann equation.'' : ''For Liouville's equation in Euclidean space, see Liouville–Bratu–Gelfand equation.'' In differential geometry, Liouville's equation, named after Joseph Liouville, is the nonlinear partial differential equation satisfied by the conformal factor of a metric on a surface of constant Gaussian curvature : :\Delta_0\log f = -K f^2, where is the flat Laplace operator :\Delta_0 = \frac +\frac = 4 \frac \frac. Liouville's equation appears in the study of isothermal coordinates in differential geometry: the independent variables are the coordinates, while can be described as the conformal factor with respect to the flat metric. Occasionally it is the square that is referred to as the conformal factor, instead of itself. Liouville's equation was also taken as an example by David Hilbert in the formul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Évariste Galois
Évariste Galois (; ; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a problem that had been open for 350 years. His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra. He was a staunch republican and was heavily involved in the political turmoil that surrounded the French Revolution of 1830. As a result of his political activism, he was arrested repeatedly, serving one jail sentence of several months. For reasons that remain obscure, shortly after his release from prison he fought in a duel and died of the wounds he suffered. Life Early life Galois was born on 25 October 1811 to Nicolas-Gabriel Galois and Adélaïde-Marie (née Demante). His father was a Republican and was head of Bourg-la-Reine's liberal party. His father became may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eugène Charles Catalan
Eugène Charles Catalan (30 May 1814 – 14 February 1894) was a French and Belgian mathematician who worked on continued fractions, descriptive geometry, number theory and combinatorics. His notable contributions included discovering a periodic minimal surface in the space \mathbb^3; stating the famous Catalan's conjecture, which was eventually proved in 2002; and, introducing the Catalan number to solve a combinatorial problem. Biography Catalan was born in Bruges (now in Belgium, then under Dutch rule even though the Kingdom of the Netherlands had not yet been formally instituted), the only child of a French jeweller by the name of Joseph Catalan, in 1814. In 1825, he traveled to Paris and learned mathematics at École Polytechnique, where he met Joseph Liouville (1833). In December 1834 he was expelled along with most of the students in his year for political reasons; he resumed his studies in January 1835, graduated that summer, and went on to teach at Châlons-sur-Marne. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nikolai Bugaev
Nikolai Vasilievich Bugaev (russian: Никола́й Васи́льевич Буга́ев; September 14, 1837 – June 11, 1903) was a prominent Russian mathematician, the father of Andrei Bely. Early life and education Bugaev was born in Georgia, Russian Empire into a somewhat unstable family (his father was an army doctor), and at the age of ten young Nikolai was sent to Moscow to find his own means of obtaining an education. He graduated in 1859 from Moscow University, where he majored in mathematics and physics. Bugaev then studied engineering and then wrote a master's thesis in 1863 on the convergence of infinite series. This document was considered sufficiently impressive to win him a place studying under Karl Weierstrass and Ernst Kummer in Berlin. He also spent some time in Paris studying under Joseph Liouville. He earned his doctoral degree in 1866. Career After his doctoral degree, Bugaev returned to Moscow and taught there for the remainder of his career. Some of h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal De Mathématiques Pures Et Appliquées
The ''Journal de Mathématiques Pures et Appliquées'' () is a French monthly scientific journal of mathematics, founded in 1836 by Joseph Liouville (editor: 1836–1874). The journal was originally published by Charles Louis Étienne Bachelier. After Bachelier's death in 1853, publishing passed to his son-in-law, Louis Alexandre Joseph Mallet, and the journal was marked Mallet-Bachelier. The publisher was sold to Gauthier-Villars (:fr:Gauthier-Villars) in 1863, where it remained for many decades. The journal is currently published by Elsevier. According to the 2018 Journal Citation Reports, its impact factor is 2.464. Articles are written in English language, English or French language, French. References External links * Online access* http://sites.mathdoc.fr/JMPA/ Index of freely available volumes Up to 1945, volumes of Journal de Mathématiques Pures et Appliquées are available online free in their entirety from Internet Archive or Bibliothèque nationale de France. Re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He was one of the first to state and rigorously prove theorems of calculus, rejecting the heuristic principle of the generality of algebra of earlier authors. He almost singlehandedly founded complex analysis and the study of permutation groups in abstract algebra. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Saint-Omer
Saint-Omer (; vls, Sint-Omaars) is a commune and sub-prefecture of the Pas-de-Calais department in France. It is west-northwest of Lille on the railway to Calais, and is located in the Artois province. The town is named after Saint Audomar, who brought Christianity to the area. The canalised section of the river Aa begins at Saint-Omer, reaching the North Sea at Gravelines in northern France. Below its walls, the Aa connects with the Neufossé Canal, which ends at the river Lys. History Saint-Omer first appeared in the writings during the 7th century under the name of Sithiu (Sithieu or Sitdiu), around the Saint-Bertin abbey founded on the initiative of Audomar, (Odemaars or Omer). Omer, bishop of Thérouanne, in the 7th century established the Abbey of Saint Bertin, from which that of Notre-Dame was an offshoot. Rivalry and dissension, which lasted till the French Revolution, soon sprang up between the two monasteries, becoming especially virulent when in 1559 St Omer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]