HOME
*





Light Dark Matter
Light dark matter, in astronomy and cosmology, are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter, such as Massive Compact Halo Objects (MACHOs). The Lee- Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to \approx 2 GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order \approx m^2/M^4, where ''m'' is the WIMP mass and ''M'' the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out (i.e. stop interacting) much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than \sim 2 GeV the WIMP relic density would overclos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomy
Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest include planets, natural satellite, moons, stars, nebulae, galaxy, galaxies, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond atmosphere of Earth, Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Babylonian astronomy, Babylonians, Greek astronomy, Greeks, Indian astronomy, Indians, Egyptian astronomy, Egyptians, Chinese astronomy, Chinese, Maya civilization, Maya, and many anc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Review D
Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally consists of a series of questions about the pati ..., a regular overall check-up with a doctor * ''Physical'' (Olivia Newton-John album), 1981 ** "Physical" (Olivia Newton-John song) * ''Physical'' (Gabe Gurnsey album) * "Physical" (Alcazar song) (2004) * "Physical" (Enrique Iglesias song) (2014) * "Physical" (Dua Lipa song) (2020) *"Physical (You're So)", a 1980 song by Adam & the Ants, the B side to " Dog Eat Dog" * ''Physical'' (TV series), an American television series See also

{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Astroparticle Physics
Astroparticle physics, also called particle astrophysics, is a branch of particle physics that studies elementary particles of astronomical origin and their relation to astrophysics and cosmology. It is a relatively new field of research emerging at the intersection of particle physics, astronomy, astrophysics, detector physics, relativity, solid state physics, and cosmology. Partly motivated by the discovery of neutrino oscillation, the field has undergone rapid development, both theoretically and experimentally, since the early 2000s. History The field of astroparticle physics is evolved out of optical astronomy. With the growth of detector technology came the more mature astrophysics, which involved multiple physics subtopics, such as mechanics, electrodynamics, thermodynamics, plasma physics, nuclear physics, relativity, and particle physics. Particle physicists found astrophysics necessary due to difficulty in producing particles with comparable energy to those found in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


WISP (quantum Mechanics)
In particle physics, the acronym WISP refers to a largely hypothetical weakly interacting sub-eV particle, or ''weakly interacting ''slender'' particle'', or ''weakly interacting ''slim'' particle'' – low-mass particles which rarely interact with conventional particles. The term is used to generally categorize a type of dark matter candidate, and is essentially synonymous with '' axion-like particle'' (ALP). With the exception of “active” neutrinos, all WISPs are hypothetical particles. WISPs are the low-mass counterpart of weakly interacting massive particles (WIMPs). Discussion Except for conventional, active neutrinos, all WISPs are candidate dark matter constituents, and many proposed experiments to detect WISPs might possibly be able to detect several different kinds. “WISP” is most often used to refer to a low-mass hypothetical particles which are viable dark matter candidates. Examples include: * Axion – long standing hypothetical strong force related light p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weakly Interacting Massive Particles
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gravity and any other force (or forces), potentially not part of the Standard Model itself, which is as weak as or weaker than the weak nuclear force, but also non-vanishing in its strength. Many WIMP candidates are expected to have been produced thermally in the early Universe, similarly to the particles of the Standard Model according to Big Bang cosmology, and usually will constitute cold dark matter. Obtaining the correct abundance of dark matter today via thermal production requires a self-annihilation cross section of \langle \sigma v \rangle \simeq 3 \times 10^ \mathrm^ \;\mathrm^, which is roughly what is expected for a new particle in the 100 GeV mass range that interacts via the electroweak force. Experimental efforts to dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scalar Field Dark Matter
In astrophysics and cosmology scalar field dark matter is a classical, minimally coupled, scalar field postulated to account for the inferred dark matter. Background The universe may be accelerating, fueled perhaps by a cosmological constant or some other field possessing long range ‘repulsive’ effects. A model must predict the correct form for the large scale clustering spectrum,Galaxies are not scattered about the universe in a random way, but rather form an intricate network of filaments, sheets, and clusters. How these large-scale structures formed is at the root of many key questions in cosmology. account for cosmic microwave background anisotropies on large and intermediate angular scales, and provide agreement with the luminosity distance relation obtained from observations of high redshift supernovae. The modeled evolution of the universe includes a large amount of unknown matter and energy in order to agree with such observations. This energy density has two comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Neutralino
In supersymmetry, the neutralino is a hypothetical particle. In the Minimal Supersymmetric Standard Model (MSSM), a popular model of realization of supersymmetry at a low energy, there are four neutralinos that are fermions and are electrically neutral, the lightest of which is stable in an R-parity conserved scenario of MSSM. They are typically labeled (the lightest), , and (the heaviest) although sometimes \tilde_1^0, \ldots, \tilde_4^0 is also used when \tilde_i^\pm is used to refer to charginos. : These four states are composites of the bino and the neutral wino (which are the neutral electroweak gauginos), and the neutral higgsinos. As the neutralinos are Majorana fermions, each of them is identical to its antiparticle. Expected behavior If they exist, these particles would only interact with the weak vector bosons, so they would not be directly produced at hadron colliders in copious numbers. They would primarily appear as particles in cascade decays (decays t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Supersymmetric Standard Model
The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the inimumnumber of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it. Background The MSSM was originally proposed in 1981 to stabilize the weak scale, solving the hierarchy problem. The Higgs boson mass of the Standard Model is unstable to quantum corrections and the theory predicts that weak scale should be much weaker than what is observed to be. In the MSSM, the Higgs boson has a fermionic superpartne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Matter Halo
According to modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo may contain multiple virialized clumps of dark matter bound together by gravity, known as subhalos. Modern cosmological models, such as ΛCDM, propose that dark matter halos and subhalos may contain galaxies. The dark matter halo of a galaxy envelops the galactic disc and extends well beyond the edge of the visible galaxy. Thought to consist of dark matter, halos have not been observed directly. Their existence is inferred through observations of their effects on the motions of stars and gas in galaxies and gravitational lensing. Dark matter halos play a key role in current models of galaxy formation and evolution. Theories that attempt to explain the nature of dark matter halos with varying degrees of success include cold dark m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axion Dark Matter Experiment
The Axion Dark Matter Experiment (ADMX, also written as ''Axion Dark Matter eXperiment'' in the project's documentation) uses a resonant microwave cavity within a large superconducting magnet to search for cold dark matter axions in the local galactic dark matter halo. Unusual for a dark matter detector, it is not located deep underground. Sited at the Center for Experimental Nuclear Physics and Astrophysics (CENPA) at the University of Washington, ADMX is a large collaborative effort with researchers from universities and laboratories around the world. Background The axion is a hypothetical elementary particle originally postulated to solve the strong CP problem. The axion is also an extremely attractive dark matter candidate. The axion is the puzzle piece allowing these two mysteries to fit naturally into our understanding of the universe. Strong CP problem The axion was originally postulated to exist as part of the solution to the "strong CP problem". This problem arose fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axion
An axion () is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to resolve the strong CP problem in quantum chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as a possible component of cold dark matter. History Strong CP problem As shown by Gerard 't Hooft, strong interactions of the standard model, QCD, possess a non-trivial vacuum structure that in principle permits violation of the combined symmetries of charge conjugation and parity, collectively known as CP. Together with effects generated by weak interactions, the effective periodic strong CP-violating term, , appears as a Standard Model input – its value is not predicted by the theory, but must be measured. However, large CP-violating interactions originating from QCD would induce a large electric dipole moment (EDM) for the neutron. Experimental constraints on the currently unobserved EDM implies CP violation from QCD must be e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]