Legendre Rational Functions
   HOME
*





Legendre Rational Functions
In mathematics the Legendre rational functions are a sequence of orthogonal functions on  , âˆž). They are obtained by composing the Cayley transform with Legendre polynomials">Cayley_transform.html" ;"title=", âˆž). They are obtained by composing the Cayley transform">, âˆž). They are obtained by composing the Cayley transform with Legendre polynomials. A rational Legendre function of degree ''n'' is defined as: :R_n(x) = \frac\,P_n\left(\frac\right) where P_n(x) is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm–Liouville problem: :(x+1)\partial_x(x\partial_x((x+1)v(x)))+\lambda v(x)=0 with eigenvalues :\lambda_n=n(n+1)\, Properties Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves. Recursion :R_(x)=\frac\,\frac\,R_n(x)-\frac\,R_(x)\quad\mathrm and :2(2n+1)R_n(x)=(x+1)^2(\partial_x R_(x)-\partial_x R_(x))+(x+1) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal Functions
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval (mathematics), interval as the domain of a function, domain, the bilinear form may be the integral of the product of functions over the interval: : \langle f,g\rangle = \int \overlineg(x)\,dx . The functions f and g are bilinear form#Reflexivity and orthogonality, orthogonal when this integral is zero, i.e. \langle f, \, g \rangle = 0 whenever f \neq g. As with a basis (linear algebra), basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector dot-product; two vectors are mutually independent (orthogonal) if their dot-product is zero. Suppose \ is a sequence of orthogonal functions of nonzero L2-norm, ''L''2-norms \left\, f_n \right\, _2 = \sqrt = \left(\int f_n ^2 \ dx \right) ^\frac . It follows th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cayley Transform
In mathematics, the Cayley transform, named after Arthur Cayley, is any of a cluster of related things. As originally described by , the Cayley transform is a mapping between skew-symmetric matrices and special orthogonal matrices. The transform is a homography used in real analysis, complex analysis, and quaternionic analysis. In the theory of Hilbert spaces, the Cayley transform is a mapping between linear operators . Real homography The Cayley transform is an automorphism of the real projective line that permutes the elements of in sequence. For example, it maps the positive real numbers to the interval ˆ’1, 1 Thus the Cayley transform is used to adapt Legendre polynomials for use with functions on the positive real numbers with Legendre rational functions. As a real homography, points are described with projective coordinates, and the mapping is : ,\ 1= \left frac ,\ 1\right\thicksim - 1, \ x + 1= ,\ 1begin1 & 1 \\ -1 & 1 \end . Complex homography On the Riemann sphere, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Legendre Polynomials
In physical science and mathematics, Legendre polynomials (named after Adrien-Marie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions. Definition by construction as an orthogonal system In this approach, the polynomials are defined as an orthogonal system with respect to the weight function w(x) = 1 over the interval 1,1/math>. That is, P_n(x) is a polynomial of degree n, such that \int_^1 P_m(x) P_n(x) \,dx = 0 \quad \text n \ne m. With the additional standardization co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as Df = \lambda f for some scalar eigenvalue \lambda. The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions. An eigenfunction is a type of eigenvector. Eigenfunctions In general, an eigenvector of a linear operator ''D'' defined on some vector space is a nonzero vector in the domain of ''D'' that, when ''D'' acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where ''D'' is defined on a function space, the eigenvectors are referred to as eigenfunctions. That is, a function ''f'' is an eigenfunction of ''D'' if it satisfies the equation where λ is a scalar. The solutions to Equation may also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]