HOME
*





Lawson Topology
In mathematics and theoretical computer science the Lawson topology, named after Jimmie D. Lawson, is a topology on partially ordered sets used in the study of domain theory. The lower topology on a poset ''P'' is generated by the subbasis consisting of all complements of principal filters on ''P''. The Lawson topology on ''P'' is the smallest common refinement of the lower topology and the Scott topology on ''P''. Properties * If ''P'' is a complete upper semilattice, the Lawson topology on ''P'' is always a complete T1 topology. See also *Formal ball References * G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, ... (2003), ''Continuous Lattices and Domains'', Encyclopedia of Mathematics and its Applic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partially Ordered Set
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Domain Theory
Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and is closely related to topology. Motivation and intuition The primary motivation for the study of domains, which was initiated by Dana Scott in the late 1960s, was the search for a denotational semantics of the lambda calculus. In this formalism, one considers "functions" specified by certain terms in the language. In a purely syntactic way, one can go from simple functions to functions that take other functions as their input arguments. Using again just the syntactic transformations available in this formalism, one can obtain s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poset
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Filter (mathematics)
In mathematics, a filter or order filter is a special subset of a partially ordered set (poset). Filters appear in order and lattice theory, but can also be found in topology, from which they originate. The dual notion of a filter is an order ideal. Filters on sets were introduced by Henri Cartan in 1937 and as described in the article dedicated to filters in topology, they were subsequently used by Nicolas Bourbaki in their book ''Topologie Générale'' as an alternative to the related notion of a net developed in 1922 by E. H. Moore and Herman L. Smith. Order filters are generalizations of this notion from sets to the more general setting of partially ordered sets. For information on order filters in the special case where the poset consists of the power set ordered by set inclusion, see the article Filter (set theory). Motivation 1. Intuitively, a filter in a partially ordered set (), P, is a subset of P that includes as members those elements that are large enoug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scott Topology
Scott may refer to: Places Canada * Scott, Quebec, municipality in the Nouvelle-Beauce regional municipality in Quebec * Scott, Saskatchewan, a town in the Rural Municipality of Tramping Lake No. 380 * Rural Municipality of Scott No. 98, Saskatchewan United States * Scott, Arkansas * Scott, Georgia * Scott, Indiana * Scott, Louisiana * Scott, Missouri * Scott, New York * Scott, Ohio * Scott, Wisconsin (other) (several places) * Fort Scott, Kansas * Great Scott Township, St. Louis County, Minnesota * Scott Air Force Base, Illinois * Scott City, Kansas * Scott City, Missouri * Scott County (other) (various states) * Scott Mountain, a mountain in Oregon * Scott River, in California * Scott Township (other) (several places) Elsewhere * 876 Scott, minor planet orbiting the Sun * Scott (crater), a lunar impact crater near the south pole of the Moon *Scott Conservation Park, a protected area in South Australia People * Scott (surname), including a list ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semilattice
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa. Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order. A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by correspondi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semilattice
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa. Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order. A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by correspondi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Uniformizable Space
In mathematics, a topological space (''X'', ''T'') is called completely uniformizable (or Dieudonné complete) if there exists at least one complete uniformity that induces the topology ''T''. Some authors additionally require ''X'' to be Hausdorff. Some authors have called these spaces topologically complete, although that term has also been used in other meanings like ''completely metrizable'', which is a stronger property than ''completely uniformizable''. Properties * Every completely uniformizable space is uniformizable, and thus completely regular. * A completely regular space ''X'' is completely uniformizable if and only if the fine uniformity on ''X'' is complete. * Every regular paracompact space (in particular, every Hausdorff paracompact space) is completely uniformizable. * (Shirota's theorem) A completely regular Hausdorff space is realcompact if and only if it is completely uniformizable and contains no closed discrete subspace of measurable cardinality.Beckenstein ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Topology
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separated. A T1 space is also called an accessible space or a space with Fréchet topology and an R0 space is also called a symmetric space. (The term also has an entirely different meaning in functional analysis. For this reason, the term ''T1 space'' is preferred. There is also a not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Ball
In topology, a formal ball is an extension of the notion of ball to allow unbounded and negative radius. The concept of formal ball was introduced by Weihrauch and Schreiber in 1981 and the negative radius case (the generalized formal ball) by Tsuiki and Hattori in 2008. Specifically, if (X,d) is a metric space and \mathbb^ the nonnegative real numbers, then an element of B^+(X,d)=X\times\mathbb^ is a formal ball. Elements of B(X,d)=X\times\mathbb{R} are known as generalized formal balls. Formal balls possess a partial order \leq defined by (x,r)\leq(y,s) if d(x,y)\leq r-s, identical to that defined by set inclusion. Generalized formal balls are interesting because this partial order works just as well for B(X,d) as for B^+(X,d), even though a generalized formal ball with negative radius does not correspond to a subset of X. Formal balls possess the Lawson topology In mathematics and theoretical computer science the Lawson topology, named after Jimmie D. Lawson, is a topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dana Scott
Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University; he is now retired and lives in Berkeley, California. His work on automata theory earned him the Turing Award in 1976, while his collaborative work with Christopher Strachey in the 1970s laid the foundations of modern approaches to the semantics of programming languages. He has worked also on modal logic, topology, and category theory. Early career He received his B.A. in Mathematics from the University of California, Berkeley, in 1954. He wrote his Ph.D. thesis on ''Convergent Sequences of Complete Theories'' under the supervision of Alonzo Church while at Princeton, and defended his thesis in 1958. Solomon Feferman (2005) writes of this period: After completing his Ph.D. studies, he moved to the University of Chicago, working as an instructor there until 1960. In 1959, he pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]