Laguerre Transform
   HOME
*





Laguerre Transform
In mathematics, Laguerre transform is an integral transform named after the mathematician Edmond Laguerre, which uses generalized Laguerre polynomials In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's equation: xy'' + (1 - x)y' + ny = 0 which is a second-order linear differential equation. This equation has nonsingular solutions only ... L_n^\alpha(x) as kernels of the transform.McCully, Joseph. "The Laguerre transform." SIAM Review 2.3 (1960): 185-191. The Laguerre transform of a function f(x) is :L\ = \tilde f_\alpha(n) = \int_^\infty e^ x^\alpha \ L_n^\alpha(x)\ f(x) \ dx The inverse Laguerre transform is given by :L^\ = f(x) = \sum_^\infty \binom^ \frac \tilde f_\alpha(n) L_n^\alpha(x) Some Laguerre transform pairs References {{Reflist, 30em Integral transforms Mathematical physics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edmond Laguerre
Edmond Nicolas Laguerre (9 April 1834, Bar-le-Duc – 14 August 1886, Bar-le-Duc) was a French mathematician and a member of the Académie des sciences (1885). His main works were in the areas of geometry and complex analysis. He also investigated orthogonal polynomials (see Laguerre polynomials). Laguerre's method is a root-finding algorithm tailored to polynomials. He laid the foundations of a geometry of oriented spheres (Laguerre geometry and Laguerre plane), including the Laguerre transformation or transformation by reciprocal directions. Works Selection * * * * Théorie des équations numériques', Paris: Gauthier-Villars. 1884 on Google Books * * Oeuvres de Laguerrepubl. sous les auspices de l'Académie des sciences par MM. Charles Hermite, Henri Poincaré, et Eugène Rouché.'' (Paris, 1898-1905) (reprint: New York : Chelsea publ., 1972 ) Extensive lists More than 80 articleson Nundam.org.p See also * Isotropic line * ''q''-Laguerre polynomials * Big ''q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laguerre Polynomials
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's equation: xy'' + (1 - x)y' + ny = 0 which is a second-order linear differential equation. This equation has nonsingular solutions only if is a non-negative integer. Sometimes the name Laguerre polynomials is used for solutions of xy'' + (\alpha + 1 - x)y' + ny = 0~. where is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor Nikolay Yakovlevich Sonin). More generally, a Laguerre function is a solution when is not necessarily a non-negative integer. The Laguerre polynomials are also used for Gaussian quadrature to numerically compute integrals of the form \int_0^\infty f(x) e^ \, dx. These polynomials, usually denoted , , …, are a polynomial sequence which may be defined by the Rodrigues formula, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Transforms
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf)(u) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]