LOOP (programming Language)
LOOP is a simple register language that precisely captures the primitive recursive functions. The language is derived from the counter-machine model. Like the counter machines the LOOP language comprises a set of one or more unbounded ''registers'', each of which can hold a single non-negative integer. A few arithmetic instructions (like 'CleaR', 'INCrement', 'DECrement', 'CoPY', ...) operate on the registers. The only control flow instruction is 'LOOP x DO ''...'' END'. It causes the instructions within its scope to be repeated x times. (Changes of the content of register x during the execution of the loop do not affect the number of passes.) History The LOOP language was formulated in a 1967 paper by Albert R. Meyer and Dennis M. Ritchie. They showed the correspondence between the LOOP language and primitive recursive functions. The language also was the topic of the unpublished PhD thesis of Ritchie. It was also presented by Uwe Schöning, along with GOTO and WHILE. Des ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Recursive Function
In computability theory, a primitive recursive function is roughly speaking a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined before entering the loop). Primitive recursive functions form a strict subset of those general recursive functions that are also total functions. The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive. For example, addition and division, the factorial and exponential function, and the function which returns the ''n''th prime are all primitive recursive. In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. It is hence not that easy to devise a computable function that is ''n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperoperation
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called ''hyperoperations'' in this context) that starts with a unary operation (the successor function with ''n'' = 0). The sequence continues with the binary operations of addition (''n'' = 1), multiplication (''n'' = 2), and exponentiation (''n'' = 3). After that, the sequence proceeds with further binary operations extending beyond exponentiation, using right-associativity. For the operations beyond exponentiation, the ''n''th member of this sequence is named by Reuben Goodstein after the Greek prefix of ''n'' suffixed with ''-ation'' (such as tetration (''n'' = 4), pentation (''n'' = 5), hexation (''n'' = 6), etc.) and can be written as using ''n'' − 2 arrows in Knuth's up-arrow notation. Each hyperoperation may be understood recursively in terms of the previous one by: :a = \underbrace_,\quad n \ge 2 It may also be defined according to the recursion rule part of the de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Computer Science
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's ACM SIGACT, Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ACM Transactions On Computational Logic
''ACM Transactions on Computational Logic'' (''ACM TOCL'') is a scientific journal that aims to disseminate the latest findings of note in the field of logic in computer science. It is published by the Association for Computing Machinery, a premier scientific and educational society on computer science and computational technology in the United States. The editor-in-chief is Anuj Dawar (University of Cambridge). According to the ''Journal Citation Reports'', the journal had a 2020 impact factor of 0.625. See also *ACM SIGLOG ACM SIGLOG or SIGLOG is the Association for Computing Machinery Special Interest Group on Logic and Computation. It publishes a news magazine (''SIGLOG News''), and has the annual ACM-IEEE Symposium on Logic in Computer Science (LICS) as its flag ..., ACM's Special Interest Group on Computational Logic References External links *{{Official website, 1=http://tocl.acm.org/ Transactions on Computational Logic Computer science journals Logic in computer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The ACM
The ''Journal of the ACM'' is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * ''Communications of the ACM ''Communications of the ACM'' is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with ...'' References External links * Publications established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals {{compu-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Association For Computing Machinery
The Association for Computing Machinery (ACM) is a US-based international learned society for computing. It was founded in 1947 and is the world's largest scientific and educational computing society. The ACM is a non-profit professional membership group, claiming nearly 110,000 student and professional members . Its headquarters are in New York City. The ACM is an umbrella organization for academic and scholarly interests in computer science ( informatics). Its motto is "Advancing Computing as a Science & Profession". History In 1947, a notice was sent to various people: On January 10, 1947, at the Symposium on Large-Scale Digital Calculating Machinery at the Harvard computation Laboratory, Professor Samuel H. Caldwell of Massachusetts Institute of Technology spoke of the need for an association of those interested in computing machinery, and of the need for communication between them. ..After making some inquiries during May and June, we believe there is ample interest to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SIAM Journal On Computing
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References * External linksSIAM Journal on Computing on DBLP ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
North Holland Publishing Company
Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell'', the ScienceDirect collection of electronic journals, '' Trends'', the '' Current Opinion'' series, the online citation database Scopus, the SciVal tool for measuring research performance, the ClinicalKey search engine for clinicians, and the ClinicalPath evidence-based cancer care service. Elsevier's products and services also include digital tools for data management, instruction, research analytics and assessment. Elsevier is part of the RELX Group (known until 2015 as Reed Elsevier), a publicly traded company. According to RELX reports, in 2021 Elsevier published more than 600,000 articles annually in over 2,700 journals; as of 2018 its archives contained over 17 million documents and 40,000 e-books, with over one billion annual downloads. Researchers have criticized Elsevier for its high profit margin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Symbolic Logic
The '' Journal of Symbolic Logic'' is a peer-reviewed mathematics journal published quarterly by Association for Symbolic Logic. It was established in 1936 and covers mathematical logic. The journal is indexed by '' Mathematical Reviews'', Zentralblatt MATH, and Scopus. Its 2009 MCQ was 0.28, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... was 0.631. External links * Mathematics journals Publications established in 1936 Multilingual journals Quarterly journals Association for Symbolic Logic academic journals Logic journals Cambridge University Press academic journals {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick. Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication. References External links''Mathematische Annalen''homepage at Springer''Mathematische Annalen''archive (1869†... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
BlooP And FlooP
and (Bounded loop and Free loop) are simple programming languages designed by Douglas Hofstadter to illustrate a point in his book ''Gödel, Escher, Bach''. BlooP is a non-Turing-complete programming language whose main control flow structure is a bounded loop (i.e. recursion is not permitted). All programs in the language must terminate, and this language can only express primitive recursive functions. FlooP is identical to BlooP except that it supports unbounded loops; it is a Turing-complete language and can express all computable functions. For example, it can express the Ackermann function, which (not being primitive recursive) cannot be written in BlooP. Borrowing from standard terminology in mathematical logic,Hofstadter (1979), p. 424. Hofstadter calls FlooP's unbounded loops MU-loops. Like all Turing-complete programming languages, FlooP suffers from the halting problem: programs might not terminate, and it is not possible, in general, to decide which programs do. BlooP ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Recursive Function
In computability theory, a primitive recursive function is roughly speaking a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined before entering the loop). Primitive recursive functions form a strict subset of those general recursive functions that are also total functions. The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive. For example, addition and division, the factorial and exponential function, and the function which returns the ''n''th prime are all primitive recursive. In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. It is hence not that easy to devise a computable function that is ''n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |