L2 (programming Language)
The L1 and L2 interpreted languages were developed by Bell Labs in the 1950s to provide floating-point arithmetic capabilities, simplified memory access, and other enhancements for the IBM model 650 (IBM 650) digital computer and allow users to more easily develop application-specific code for these machines. History L1 was developed by Michael Wolontis and Dolores Leagus and was released in September 1955. Later, Richard Hamming Richard Wesley Hamming (February 11, 1915 – January 7, 1998) was an American mathematician whose work had many implications for computer engineering and telecommunications. His contributions include the Hamming code (which makes use of a Ha ... and Ruth A. Weiss developed the L2 package which enhanced L1 by providing additional mathematical capabilities tailored to more engineering-oriented applications. L1 and L2 were widely used within Bell Labs, and also by outside users, who usually called them "Bell 1 and Bell 2." According to Bell Labs, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interpreted Language
In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: # Parse the source code and perform its behavior directly; # Translate source code into some efficient intermediate representation or object code and immediately execute that; # Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter Virtual Machine. Early versions of Lisp programming language and minicomputer and microcomputer BASIC dialects would be examples of the first type. Perl, Raku, Python, MATLAB, and Ruby are examples of the second, while UCSD Pascal is an example of the third type. Source programs are compiled ahead of time and stored as machine independent code, which is then linked at run-time and executed by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bell Labs
Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by multinational company Nokia. With headquarters located in Murray Hill, New Jersey, the company operates several laboratories in the United States and around the world. Researchers working at Bell Laboratories are credited with the development of radio astronomy, the transistor, the laser, the photovoltaic cell, the charge-coupled device (CCD), information theory, the Unix operating system, and the programming languages B, C, C++, S, SNOBOL, AWK, AMPL, and others. Nine Nobel Prizes have been awarded for work completed at Bell Laboratories. Bell Labs had its origin in the complex corporate organization of the Bell System telephone conglomerate. In the late 19th century, the laboratory began as the Western Electric Engineering Department, l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating-point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IBM 650
The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s. The 650 was marketed to business, scientific and engineering users as a general-purpose version of the IBM 701 and IBM 702 computers which were for scientific and business purposes respectively. It was also marketed to users of unit record equipment, punched card machines who were upgrading from Unit record equipment#Calculating, calculating punches, such as the IBM 604, to computers. Because of its relatively low cost and ease of Computer programming, programming, the 650 was used to pioneer a wide variety of applications, from modeling submarine crew performance to teaching high school and college students c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard Hamming
Richard Wesley Hamming (February 11, 1915 – January 7, 1998) was an American mathematician whose work had many implications for computer engineering and telecommunications. His contributions include the Hamming code (which makes use of a Hamming matrix), the Hamming window, Hamming numbers, sphere-packing (or Hamming bound), Hamming graph concepts, and the Hamming distance. Born in Chicago, Hamming attended University of Chicago, University of Nebraska and the University of Illinois at Urbana–Champaign, where he wrote his doctoral thesis in mathematics under the supervision of Waldemar Trjitzinsky (1901–1973). In April 1945 he joined the Manhattan Project at the Los Alamos Laboratory, where he programmed the IBM calculating machines that computed the solution to equations provided by the project's physicists. He left to join the Bell Telephone Laboratories in 1946. Over the next fifteen years he was involved in nearly all of the Laboratories' most prominent achievements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ruth A
Ruth (or its variants) may refer to: Places France * Château de Ruthie, castle in the commune of Aussurucq in the Pyrénées-Atlantiques département of France Switzerland * Ruth, a hamlet in Cologny United States * Ruth, Alabama * Ruth, Arkansas * Ruth, California * Ruth, Louisiana * Ruth, Pulaski County, Kentucky * Ruth, Michigan * Ruth, Mississippi * Ruth, Nevada * Ruth, North Carolina * Ruth, Virginia * Ruth, Washington * Ruth, West Virginia In space * Ruth (lunar crater), crater on the Moon * Ruth (Venusian crater), crater on Venus * 798 Ruth, asteroid People * Ruth (biblical figure) * Ruth (given name) contains list of namesakes including fictional * Princess Ruth or Keʻelikōlani, (1826–1883), Hawaiian princess Surname * A. S. Ruth, American politician * Babe Ruth (1895–1948), American baseball player * Connie Ruth, American politician * Earl B. Ruth (1916–1989), American politician * Elizabeth Ruth, Canadian novelist * Kristin Ruth, American judge * Nancy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |