Kinin
   HOME
*





Kinin
A kinin is any of various structurally related polypeptides, such as bradykinin and kallidin. They are members of the autacoid family. Kinins are peptides that are cleaved from kininogens by the process of kallikreins. Kallikreins activate kinins when stimulated. It is a component of the kinin-kallikrein system. Their precursors are kininogens. Kininogens contain a 9-11 amino acid bradykinin sequence. In botany, the plant hormones known as cytokinins were first called kinins, but the name was changed to avoid confusion. Effects of Kinins Kinin are short lived peptides that cause pain sensation, arteriolar dilation, increase vascular permeability and cause contractions in smooth muscle. Kinins transmit their effects through G protein- coupled receptors. Kinin act on axons to block nervous impulses, which leads to distal muscle relaxation. Kinin are also potent nerve stimulators. which is mostly responsible for the sense of pain (and sometimes itching). Kinin increase vascular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kininogen
Kininogens are precursor proteins for kinins, biologically active polypeptides involved in blood coagulation, vasodilation, smooth muscle contraction, inflammatory regulation, and the regulation of the cardiovascular and renal systems. Types of kininogen There are two main types of kininogen (KNG), high-molecular-weight-kininogen and low-molecular-weight-kininogen, with a third type – T-kininogen – only found in rats but not humans. High molecular weight kininogen High-molecular-weight-kininogen (HK) is a non-enzymatic cofactor involved in the kinin-kallikrein system, which plays a role in blood coagulation, blood pressure regulation, and inflammation. It is synthesized in endothelial cells and is produced mostly by the liver. It is also a precursor protein for bradykinin. Low molecular weight kininogen Low-molecular-weight-kininogen (LK) is mainly a precursor protein for kallidin. LK, however, is not actively involved in blood coagulation, but its byproducts c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bradykinin
Bradykinin (BK) (Greek brady-, slow; -kinin, kīn(eîn) to move) is a peptide that promotes inflammation. It causes arterioles to dilate (enlarge) via the release of prostacyclin, nitric oxide, and endothelium-derived hyperpolarizing factor and makes veins constrict, via prostaglandin F2, thereby leading to leakage into capillary beds, due to the increased pressure in the capillaries. Bradykinin is a physiologically and pharmacologically active peptide of the kinin group of proteins, consisting of nine amino acids. A class of drugs called angiotensin converting enzyme inhibitors (ACE inhibitors) increase bradykinin levels by inhibiting its degradation, thereby increasing its blood pressure lowering effect. ACE inhibitors are FDA approved for the treatment of hypertension and heart failure. Structure Bradykinin, sometimes referred to as BK, is a 9-amino acid peptide chain. The amino acid sequence of bradykinin is: Arg-Pro-Pro-Gly- Phe-Ser-Pro- Phe- Arg (RPPGFSPFR). Its empi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kallidin
Kallidin is a bioactive kinin formed in response to injury from kininogen precursors through the action of kallikreins. Kallidin is a decapeptide whose sequence is H-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH. It can be converted to bradykinin by the aminopeptidase enzyme. It can be a substrate for carboxypeptidase M and N. Kallidin is identical to bradykinin with an additional lysine residue added at the N-terminal end and signals through the bradykinin receptor The bradykinin receptor family is a group of G-protein coupled receptors whose principal ligand is the protein bradykinin. There are two Bradykinin receptors: the B1 receptor and the B2 receptor. B1 receptor Bradykinin receptor B1 (B1) is a .... References Peptides Kinin–kallikrein system {{Biochem-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polypeptides
Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A polypeptide is a longer, continuous, unbranched peptide chain. Hence, peptides fall under the broad chemical classes of biological polymers and oligomers, alongside nucleic acids, oligosaccharides, polysaccharides, and others. A polypeptide that contains more than approximately 50 amino acids is known as a protein. Proteins consist of one or more polypeptides arranged in a biologically functional way, often bound to ligands such as coenzymes and cofactors, or to another protein or other macromolecule such as DNA or RNA, or to complex macromolecular assemblies. Amino acids that have been incorporated into peptides are termed residues. A water molecule is released during formation of each amide bond.. All peptides except cyclic peptides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Autacoid
Autacoids or "autocoids" are biological factors (molecules) which act like local hormones, have a brief duration, and act near their site of synthesis. The word ''autacoid'' comes from the Greek words "autos" (self) and "acos" (relief; i.e., drug). The effects of autacoids are primarily local, though large quantities can be produced and moved into circulation. Autacoids may thus have systemic effects by being transported via the circulation. These regulating molecules are also metabolized locally. In sum, these compounds typically are produced locally, act locally and are metabolized locally. Autacoids can have a variety of different biological actions, including modulating the activities of smooth muscles, glands, nerves, platelets and other tissues. Some autacoids are chiefly characterized by the effect they have on specific tissues, such as smooth muscle. With respect to vascular smooth muscle, there exist both vasoconstrictor and vasodilator autacoids. Vasodilator autacoids are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Botany
Botany, also called , plant biology or phytology, is the science of plant life and a branch of biology. A botanist, plant scientist or phytologist is a scientist who specialises in this field. The term "botany" comes from the Ancient Greek word (''botanē'') meaning " pasture", " herbs" "grass", or " fodder"; is in turn derived from (), "to feed" or "to graze". Traditionally, botany has also included the study of fungi and algae by mycologists and phycologists respectively, with the study of these three groups of organisms remaining within the sphere of interest of the International Botanical Congress. Nowadays, botanists (in the strict sense) study approximately 410,000 species of land plants of which some 391,000 species are vascular plants (including approximately 369,000 species of flowering plants), and approximately 20,000 are bryophytes. Botany originated in prehistory as herbalism with the efforts of early humans to identify – and later cultivate – ed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plant Hormone
Plant hormone (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, from embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and through to reproductive development. Unlike in animals (in which hormone production is restricted to specialized glands) each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book. Phytohormones occur across the plant kingdom, and even in algae, where they have similar functions to those seen in higher plants. Some phytohormones also occur in microorganisms, such as unicellular fungi and bacteria, however in these cases they do not play a hormonal role and can better be regarded as secondary metabolites. Characteristics The word hormone is derived from Greek, meaning ''set in motion''. Plant hormones affect gene ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cytokinin
Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence. There are two types of cytokinins: adenine-type cytokinins represented by kinetin, zeatin, and 6-benzylaminopurine, and phenylurea-type cytokinins like diphenylurea and thidiazuron (TDZ). Most adenine-type cytokinins are synthesized in roots. Cambium and other actively dividing tissues also synthesize cytokinins. No phenylurea cytokinins have been found in plants. Cytokinins participate in local and long-distance signalling, with the same transport mechanism as purines and nucleosides. Typically, cytokinins are transported in the xylem. Cytokinins act in concert with auxin, another plant growth hormone. The two are complementary, having generally opposite effects. History The idea of specific substances required for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vasodilation
Vasodilation is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, which is the narrowing of blood vessels. When blood vessels dilate, the flow of blood is increased due to a decrease in vascular resistance and increase in cardiac output. Therefore, dilation of arterial blood vessels (mainly the arterioles) decreases blood pressure. The response may be intrinsic (due to local processes in the surrounding tissue) or extrinsic (due to hormones or the nervous system). In addition, the response may be localized to a specific organ (depending on the metabolic needs of a particular tissue, as during strenuous exercise), or it may be systemic (seen throughout the entire systemic circulation). Endogenous substances and drugs that cause vasodilation are termed vasodilators. Such vasoactivity is necessary for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Muscle
Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations (''bands'' or ''stripes''). It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit muscle, the whole bundle or sheet of smooth muscle cells contracts as a syncytium. Smooth muscle is found in the walls of hollow organs, including the stomach, intestines, bladder and uterus; in the walls of passageways, such as blood, and lymph vessels, and in the tracts of the respiratory, urinary, and reproductive systems. In the eyes, the ciliary muscles, a type of smooth muscle, dilate and contract the iris and alter the shape of the lens. In the skin, smooth muscle cells such as those of the arrector pili cause hair to stand erect in response to cold temperature or fear. Structure Gross anatomy Smooth muscle is grouped into two types: single-unit smooth muscle, also known as visceral smooth muscle, and multiunit smooth muscle. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the reaction ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]