HOME





Kruskal's Theorem
In mathematics, Kruskal's tree theorem states that the set of finite tree (graph theory), trees over a well-quasi-ordering, well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphism (graph theory), homeomorphic embedding. A finitary application of the theorem gives the existence of the fast-growing TREE function. TREE(3) is largely accepted to be one of the largest simply defined finite numbers, dwarfing other large numbers such as Graham's number and googolplex. History The theorem was conjectured by Andrew Vázsonyi and mathematical proof, proved by ; a short proof was given by . It has since become a prominent example in reverse mathematics as a statement that cannot be proved in ATR0 (a second-order arithmetic theory with a form of arithmetical transfinite recursion). In 2004, the result was generalized from trees to graph (discrete mathematics), graphs as the Robertson–Seymour theorem, a result that has also proved important in reverse mathematics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Rooted Tree
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A directed tree, oriented tree,See .See . polytree,See . or singly connected networkSee . is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an arborescence or out-tree� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Peano Axioms
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Kőnig's Lemma
Kőnig's lemma or Kőnig's infinity lemma is a theorem in graph theory due to the Hungarian mathematician Dénes Kőnig who published it in 1927. It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated by researchers in mathematical logic, especially in recursion theory, computability theory. This theorem also has important roles in constructive mathematics and proof theory. Statement of the lemma Let G be a connected graph, connected, Glossary of graph theory terms#finite, locally finite, Glossary of graph theory terms#finite, infinite graph. This means that every two vertices can be connected by a finite path, each vertex is adjacent to only finitely many other vertices, and the graph has infinitely many vertices. Then G contains a Ray (graph theory), ray: a path (graph theory), simple path (a path with no repeated vertices) that starts at one vertex and continues from it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Ackermann Ordinal
In mathematics, the Ackermann ordinal is a certain large countable ordinal, named after Wilhelm Ackermann. The term "Ackermann ordinal" is also occasionally used for the small Veblen ordinal, a somewhat larger ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the Veblen function In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If ''φ''0 is any normal function, then for any non-zero ordinal '' ...s to produce countable ordinals even for uncountable arguments, and some of which are " collapsing functions". The last one is an extension of the Veblen functions for more than 2 arguments. The smaller Ackermann ordinal is the limit of a system of ordinal notations invented by , and is sometimes denot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Small Veblen Ordinal
In mathematics, the small Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. It is occasionally called the Ackermann ordinal, though the Ackermann ordinal described by is somewhat smaller than the small Veblen ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal \Gamma_0. Most systems of notation use symbols such as \psi(\alpha), \theta(\alpha), \psi_\alpha(\beta), some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are " collapsing functions". The small Veblen ordinal \theta_(0) or \psi(\Omega^) is the limit of ordinals that can be described using a version of Veblen functions with finitely many arguments. It is the ordinal that measures the strength of Kruskal's theorem. It is also the ordinal type of a certain ordering of rooted tree In graph theory, a tree is an undirected graph in which any two vertices are connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Proof-theoretic Ordinal
In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. In addition to obtaining the proof-theoretic ordinal of a theory, in practice ordinal analysis usually also yields various other pieces of information about the theory being analyzed, for example characterizations of the classes of provably recursive, hyperarithmetical, or \Delta^1_2 functions of the theory. History The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0. See Gentzen's consistency proof. Definition Ordinal analysis concerns true, effective (recursive) theories that can interpret a sufficient por ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Impredicativity
In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions. The opposite of impredicativity is predicativity, which essentially entails building stratified (or ramified) theories where quantification over a type at one 'level' results in types at a new, higher, level. A prototypical example is intuitionistic type theory, which retains ramification (without the explicit levels) so as to discard impredicativity. The 'levels' here correspond to the number of layers of dependency in a term definition. Russell's paradox is a famous example of an impredicative construction—namely the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Harvey Friedman (mathematician)
Harvey Friedman (born 23 September 1948)Handbook of Philosophical Logic, , p. 38 is an American mathematical logician at Ohio State University in Columbus, Ohio. He has worked on reverse mathematics, a project intended to derive the axioms of mathematics from the theorems considered to be necessary. In recent years, this has advanced to a study of Boolean relation theory, which attempts to justify large cardinal axioms by demonstrating their necessity for deriving certain propositions considered "concrete". Biography Friedman is the brother of mathematician Sy Friedman. Friedman earned his Ph.D. from the Massachusetts Institute of Technology in 1967, at age 19, with a dissertation on ''Subsystems of Analysis''. His advisor was Gerald Sacks. Friedman received the Alan T. Waterman Award in 1984. He also assumed the title of Visiting Scientist at IBM. He delivered the Tarski Lectures in 2007. In 1967, Friedman was listed in the ''Guinness Book of World Records'' for being ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Paris–Harrington Theorem
In mathematical logic, the Paris–Harrington theorem states that a certain claim in Ramsey theory, namely the strengthened finite Ramsey theorem, which is expressible in Peano arithmetic, is not provable in this system. That Ramsey-theoretic claim is, however, provable in slightly stronger systems. This result has been described by some (such as the editor of the ''Handbook of Mathematical Logic'' in the references below) as the first "natural" example of a true statement about the integers that could be stated in the language of arithmetic, but not proved in Peano arithmetic; it was already known that such statements existed by Gödel's first incompleteness theorem. Strengthened finite Ramsey theorem The strengthened finite Ramsey theorem is a statement about colorings and natural numbers and states that: : For any positive integers ''n'', ''k'', ''m'', such that ''m ≥ n'', one can find ''N'' with the following property: if we color each of the ''n''-element subsets of ''S'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Goodstein's Theorem
In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every Goodstein sequence (as defined below) eventually terminates at 0. Laurence Kirby and Jeff Paris showed that it is unprovable in Peano arithmetic (but it can be proven in stronger systems, such as second-order arithmetic or Zermelo-Fraenkel set theory). This was the third example of a true statement about natural numbers that is unprovable in Peano arithmetic, after the examples provided by Gödel's incompleteness theorem and Gerhard Gentzen's 1943 direct proof of the unprovability of ε0-induction in Peano arithmetic. The Paris–Harrington theorem gave another example. Kirby and Paris introduced a graph-theoretic hydra game with behavior similar to that of Goodstein sequences: the "Hydra" (named for the mythological multi-headed Hydra of Lerna) is a rooted tree, and a move consists of cutting off one of its "heads" (a branch of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]