HOME
*





Krull's Theorem
In mathematics, and more specifically in ring theory, Krull's theorem, named after Wolfgang Krull, asserts that a nonzero ring has at least one maximal ideal. The theorem was proved in 1929 by Krull, who used transfinite induction. The theorem admits a simple proof using Zorn's lemma, and in fact is equivalent to Zorn's lemma, which in turn is equivalent to the axiom of choice. Variants * For noncommutative rings, the analogues for maximal left ideals and maximal right ideals also hold. * For pseudo-rings, the theorem holds for regular ideals. * A slightly stronger (but equivalent) result, which can be proved in a similar fashion, is as follows: :::Let ''R'' be a ring, and let ''I'' be a proper ideal of ''R''. Then there is a maximal ideal of ''R'' containing ''I''. :This result implies the original theorem, by taking ''I'' to be the zero ideal (0). Conversely, applying the original theorem to ''R''/''I'' leads to this result. :To prove the stronger result directly, consi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudo-ring
In mathematics, and more specifically in abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''a ..., a pseudo-ring is one of the following variants of a ring (mathematics), ring: * A rng (algebra), rng, i.e., a structure satisfying all the axioms of a ring except for the existence of a multiplicative identity. * A set ''R'' with two binary operations + and ⋅ such that is an abelian group with additive identity, identity 0, and and for all ''a'', ''b'', ''c'' in ''R''. * An abelian group equipped with a subgroup ''B'' and a multiplication making ''B'' a ring and ''A'' a ''B''-module (mathematics), module. None of these definitions are equivalent, so it is best to avoid the term "pseudo-ring" or to clarify which meaning is intended. See also * Semiring – an algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Height (ring Theory)
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of them coinc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral domain R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unit (ring Theory)
In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for this property and is called the multiplicative inverse of . The set of units of forms a group under multiplication, called the group of units or unit group of . Other notations for the unit group are , , and (from the German term ). Less commonly, the term ''unit'' is sometimes used to refer to the element of the ring, in expressions like ''ring with a unit'' or ''unit ring'', and also unit matrix. Because of this ambiguity, is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a rng. Examples The multiplicative identity and its additive inverse are always units. More generally, any root of unit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element  that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor is called left regular or left cancellable. Similarly, an element of a ring that is not a right zero divisor is called right regular or right cancellable. An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Ideal
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, . Some examples of additive identity include: * The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as \mathbf or \vec. * The zero function or zero map defined by , under pointwise addition * The empty set under set union * An empty sum or empty coproduct * An initial object in a category (an empty coproduct, and so an identity under coproducts) Absorbing elements An absorbing element in a multiplicative semigroup or semiring generalises the property . Examples include: *The empty set, which is an absorbing element under Cartesian product of sets, since *The zero functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Ideal
In ring theory, a branch of abstract algebra, an ideal of a ring (mathematics), ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these Closure (mathematics), closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Ideal
In mathematics, especially ring theory, a regular ideal can refer to multiple concepts. In operator theory, a right ideal \mathfrak in a (possibly) non-unital ring ''A'' is said to be regular (or modular) if there exists an element ''e'' in ''A'' such that ex - x \in \mathfrak for every x \in A. In commutative algebra a regular ideal refers to an ideal containing a non-zero divisor. This article will use "regular element ideal" to help distinguish this type of ideal. A two-sided ideal \mathfrak of a ring ''R'' can also be called a (von Neumann) regular ideal if for each element ''x'' of \mathfrak there exists a ''y'' in \mathfrak such that ''xyx''=''x''. Finally, regular ideal has been used to refer to an ideal ''J'' of a ring ''R'' such that the quotient ring ''R''/''J'' is von Neumann regular ring.Burton, D.M. (1970) ''A first course in rings and ideals.'' Addison-Wesley. Reading, Massachusetts . This article will use "quotient von Neumann regular" to refer to this type of reg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noncommutative Ring
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term ''noncommutative ring'' is used instead of ''ring'' to refer to a unspecified ring which is not necessarily commutative, and hence may be commutative. Generally, this is for emphasizing that the studied properties are not restricted to commutative rings, as, in many contexts, ''ring'' is used as a shortcut for ''commutative ring''. Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise. Examples Some examples of noncommutative rings: * The ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets, there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is, in particular, the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguishin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]