HOME
*





Knot Thickness
In knot theory, each link and knot can have an assigned knot thickness. Each realization of a link or knot has a thickness assigned to it. The thickness τ of a link allows us to introduce a scale with respect to which we can then define the ropelength In physical knot theory, each realization of a link or knot has an associated ropelength. Intuitively this is the minimal length of an ideally flexible rope that is needed to tie a given link, or knot. Knots and links that minimize ropelength are ... of a link. Definition There exist several possible definitions of thickness that coincide for smooth enough curves. Global radius of curvature The thickness is defined using the simpler concept of the local thickness τ(''x''). The local thickness at a point ''x'' on the link is defined as : \tau(x)=\inf r(x,y,z),\, where ''x'', ''y'', and ''z'' are points on the link, all distinct, and ''r''(''x'', ''y'', ''z'') is the radius of the circle that passes through all three p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, Unknot, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Link (knot Theory)
In mathematical knot theory, a link is a collection of knots which do not intersect, but which may be linked (or knotted) together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called knot theory. Implicit in this definition is that there is a ''trivial'' reference link, usually called the unlink, but the word is also sometimes used in context where there is no notion of a trivial link. For example, a co-dimension 2 link in 3-dimensional space is a subspace of 3-dimensional Euclidean space (or often the 3-sphere) whose connected components are homeomorphic to circles. The simplest nontrivial example of a link with more than one component is called the Hopf link, which consists of two circles (or unknots) linked together once. The circles in the Borromean rings are collectively linked despite the fact that no two of them are directly linked. The Borromean rings thus form a Brunnian link and in fact constitut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot (mathematics)
In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of which takes one knot to the other. A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed — there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term ''knot'' is also applied to embeddings of in , especially in the case . The branch of mathematics that studies knots is known as knot theory and has many relations to graph theory. Formal definition A knot is an embedding of the circle () into three-dimensional Euclidean space (), or the 3-sphere (), since the 3-sphere is compact. Two knots are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ropelength
In physical knot theory, each realization of a link or knot has an associated ropelength. Intuitively this is the minimal length of an ideally flexible rope that is needed to tie a given link, or knot. Knots and links that minimize ropelength are called ideal knots and ideal links respectively. Definition The ropelength of a knotted curve C is defined as the ratio L(C) = \operatorname(C)/\tau(C), where \operatorname(C) is the length of C and \tau(C) is the knot thickness of C. Ropelength can be turned into a knot invariant by defining the ropelength of a knot K to be the minimum ropelength over all curves that realize K. Ropelength minimizers One of the earliest knot theory questions was posed in the following terms: In terms of ropelength, this asks if there is a knot with ropelength 12. The answer is no: an argument using quadrisecants shows that the ropelength of any nontrivial knot has to be at least 15.66. However, the search for the answer has spurred research on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Tube
In mathematics, a tubular neighborhood of a submanifold of a smooth manifold is an open set around it resembling the normal bundle. The idea behind a tubular neighborhood can be explained in a simple example. Consider a smooth curve in the plane without self-intersections. On each point on the curve draw a line perpendicular to the curve. Unless the curve is straight, these lines will intersect among themselves in a rather complicated fashion. However, if one looks only in a narrow band around the curve, the portions of the lines in that band will not intersect, and will cover the entire band without gaps. This band is a tubular neighborhood. In general, let ''S'' be a submanifold of a manifold ''M'', and let ''N'' be the normal bundle of ''S'' in ''M''. Here ''S'' plays the role of the curve and ''M'' the role of the plane containing the curve. Consider the natural map :i : N_0 \to S which establishes a bijective correspondence between the zero section N_0 of ''N'' and the su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]