HOME
*





Kawasaki's Riemann–Roch Formula
In differential geometry, Kawasaki's Riemann–Roch formula, introduced by Tetsuro Kawasaki, is the Riemann–Roch formula for orbifolds. It can compute the Euler characteristic of an orbifold. Kawasaki's original proof made a use of the equivariant index theorem. Today, the formula is known to follow from the Riemann–Roch formula for quotient stack In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. Th ...s. References *Tetsuro Kawasaki. The Riemann-Roch theorem for complex V-manifolds. Osaka J. Math., 16(1):151–159, 1979 Theorems in differential geometry Theorems in algebraic geometry See also * Riemann–Roch-type theorem {{differential-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbifold
In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space. Definitions of orbifold have been given several times: by Ichirô Satake in the context of automorphic forms in the 1950s under the name ''V-manifold''; by William Thurston in the context of the geometry of 3-manifolds in the 1970s when he coined the name ''orbifold'', after a vote by his students; and by André Haefliger in the 1980s in the context of Mikhail Gromov's programme on CAT(k) spaces under the name ''orbihedron''. Historically, orbifolds arose first as surfaces with singular points long before they were formally defined. One of the first classical examples arose in the theory of modular forms with the action of the modular group \mathrm(2,\Z) on the upper half-plane: a version of the Riemann–Roch theorem holds after the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Characteristic Of An Orbifold
In differential geometry, the Euler characteristic of an orbifold, or orbifold Euler characteristic, is a generalization of the topology, topological Euler characteristic that includes contributions coming from nontrivial automorphisms. In particular, unlike a topological Euler characteristic, it is not restricted to integer values and is in general a rational number. It is of interest in mathematical physics, specifically in string theory. Given a compact manifold M quotiented by a finite group G, the Euler characteristic of M/G is :\chi(M,G) = \frac \sum_ \chi(M^), where , G, is the order of the group G, the sum runs over all pairs of commuting elements of G, and M^ is the set of simultaneous fixed points of g_1 and g_2. If the action is free, the sum has only a single term, and so this expression reduces to the topological Euler characteristic of M divided by , G, . See also *Kawasaki's Riemann–Roch formula References * * * * External links

*https://mathoverflo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Index Theorem
In differential geometry, the equivariant index theorem, of which there are several variants, computes the (graded) trace of an element of a compact Lie group acting in given setting in terms of the integral over the fixed points of the element. If the element is neutral, then the theorem reduces to the usual index theorem. The classical formula such as the Atiyah–Bott formula is a special case of the theorem. Statement Let \pi: E \to M be a clifford module bundle. Assume a compact Lie group ''G'' acts on both ''E'' and ''M'' so that \pi is equivariant. Let ''E'' be given a connection that is compatible with the action of ''G''. Finally, let ''D'' be a Dirac operator on ''E'' associated to the given data. In particular, ''D'' commutes with ''G'' and thus the kernel of ''D'' is a finite-dimensional representation of ''G''. The equivariant index of ''E'' is a virtual character given by taking the supertrace: :\operatorname(g\mid\ker D) = \operatorname(g\mid\ker D^+) - \operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Stack
In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack. The notion is of fundamental importance in the study of stacks: a stack that arises in nature is often either a quotient stack itself or admits a stratification by quotient stacks (e.g., a Deligne–Mumford stack.) A quotient stack is also used to construct other stacks like classifying stacks. Definition A quotient stack is defined as follows. Let ''G'' be an affine smooth group scheme over a scheme ''S'' and ''X'' an ''S''-scheme on which ''G'' acts. Let the quotient stack /G/math> be the category over the category of ''S''-schemes: *an object over ''T'' is a principal ''G''-bundle P\to T together with equivariant map P\to X; *an arrow from P\to T to P'\to T' is a bundle map (i.e., forms a commutative diagram) that is compatible with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Differential Geometry
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Algebraic Geometry
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]