HOME





Karlin–Rubin Theorem
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power 1 - \beta among all possible tests of a given size ''α''. For example, according to the Neyman–Pearson lemma, the likelihood-ratio test is UMP for testing simple (point) hypotheses. Setting Let X denote a random vector (corresponding to the measurements), taken from a parametrized family of probability density functions or probability mass functions f_(x), which depends on the unknown deterministic parameter \theta \in \Theta. The parameter space \Theta is partitioned into two disjoint sets \Theta_0 and \Theta_1. Let H_0 denote the hypothesis that \theta \in \Theta_0, and let H_1 denote the hypothesis that \theta \in \Theta_1. The binary test of hypotheses is performed using a test function \varphi(x) with a reject region R (a subset of measurement space). :\varphi(x) = \begin 1 & \text x \in R \\ 0 & \text x \in R^c \end meaning that H_1 is in force if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Hypothesis Testing
A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a Critical value (statistics), critical value or equivalently by evaluating a p-value, ''p''-value computed from the test statistic. Roughly 100 list of statistical tests, specialized statistical tests are in use and noteworthy. History While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see . Choice of null hypothesis Paul Meehl has argued that the epistemological importance of the choice of null hypothesis has gone largely unacknowledged. When the null hypothesis is predicted by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistical Power
In frequentist statistics, power is the probability of detecting a given effect (if that effect actually exists) using a given test in a given context. In typical use, it is a function of the specific test that is used (including the choice of test statistic and significance level), the sample size (more data tends to provide more power), and the effect size (effects or correlations that are large relative to the variability of the data tend to provide more power). More formally, in the case of a simple hypothesis test with two hypotheses, the power of the test is the probability that the test correctly rejects the null hypothesis (H_0) when the alternative hypothesis (H_1) is true. It is commonly denoted by 1-\beta, where \beta is the probability of making a type II error (a false negative) conditional on there being a true effect or association. Background Statistical testing uses data from samples to assess, or make inferences about, a statistical population. Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Size (statistics)
In statistics, the size of a test is the probability of falsely rejecting the null hypothesis. That is, it is the probability of making a type I error. It is denoted by the Greek letter α (alpha). For a simple hypothesis, :\alpha = P(\text H_0 \mid H_0). In the case of a composite null hypothesis, the size is the supremum over all data generating processes that satisfy the null hypotheses. :\alpha = \sup_ P(\text H_0 \mid h). A test is said to have significance level In statistical hypothesis testing, a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. More precisely, a study's defined significance level, denoted by \alpha, is the ... \alpha if its size is less than or equal to \alpha . In many cases the size and level of a test are equal. References Statistical hypothesis testing {{statistics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neyman–Pearson Lemma
In statistics, the Neyman–Pearson lemma describes the existence and uniqueness of the likelihood ratio as a uniformly most powerful test in certain contexts. It was introduced by Jerzy Neyman and Egon Pearson in a paper in 1933. The Neyman–Pearson lemma is part of the Neyman–Pearson theory of statistical testing, which introduced concepts such as errors of the second kind, power function, and inductive behavior.The Fisher, Neyman–Pearson Theories of Testing Hypotheses: One Theory or Two?: Journal of the American Statistical Association: Vol 88, No 424The Fisher, Neyman–Pearson Theories of Testing Hypotheses: One Theory or Two?: Journal of the American Statistical Association: Vol 88, No 424/ref>Wald: Chapter II: The Neyman–Pearson Theory of Testing a Statistical HypothesisWald: Chapter II: The Neyman–Pearson Theory of Testing a Statistical Hypothesis/ref>The Empire of ChanceThe Empire of Chance/ref> The previous Fisherian theory of significance testing postulated only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Likelihood-ratio Test
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the more constrained model (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test, is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent. In the case of comparing two mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parametrized Family
In mathematics and its applications, a parametric family or a parameterized family is a family of objects (a set of related objects) whose differences depend only on the chosen values for a set of parameters. Common examples are parametrized (families of) functions, probability distributions, curves, shapes, etc. In probability and its applications For example, the probability density function of a random variable may depend on a parameter . In that case, the function may be denoted f_X( \cdot \, ; \theta) to indicate the dependence on the parameter . is not a formal argument of the function as it is considered to be fixed. However, each different value of the parameter gives a different probability density function. Then the ''parametric family'' of densities is the set of functions \ , where denotes the parameter space, the set of all possible values that the parameter can take. As an example, the normal distribution is a family of similarly-shaped distributions par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Density Function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a ''relative likelihood'' that the value of the random variable would be equal to that sample. Probability density is the probability per unit length, in other words, while the ''absolute likelihood'' for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample. More precisely, the PDF is used to specify the probability of the random variable falling ''within ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Probability Mass Function
In probability and statistics, a probability mass function (sometimes called ''probability function'' or ''frequency function'') is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes it is also known as the discrete probability density function. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables whose domain is discrete. A probability mass function differs from a continuous probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A continuous PDF must be integrated over an interval to yield a probability. The value of the random variable having the largest probability mass is called the mode. Formal definition Probability mass function is the probability distribution of a discrete random variable, and provides the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exponential Family
In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. Sometimes loosely referred to as ''the'' exponential family, this class of distributions is distinct because they all possess a variety of desirable properties, most importantly the existence of a sufficient statistic. The concept of exponential families is credited to E. J. G. Pitman, G. Darmois, and B. O. Koopman in 1935–1936. Exponential families of distributions provide a general framework for selecting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sufficiency (statistics)
In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters. It is closely related to the concepts of an ancillary statistic which contains no information about the model parameters, and of a complete statistic which only contains information about the parameters and no ancillary information. A related concept is that of linear sufficiency, which is weaker than ''sufficiency'' but can be applied in some cases where there is no sufficient statistic, although it is restricted to linear estimators. The Kolmogorov structure function deals with individual finite data; the related notion there is the algorithmic sufficient statistic. The concept is due to Sir Ronald Fisher in 1920. Stephen Stigler noted in 1973 that the concept of sufficiency had fallen out of favor in descriptive statistics because of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]