HOME
*





Kapustinskii Equation
The Kapustinskii equation calculates the lattice energy ''UL'' for an ionic crystal, which is experimentally difficult to determine. It is named after Anatoli Fedorovich Kapustinskii who published the formula in 1956. :U_ = \cdot \frac \cdot \biggl( 1 - \frac \biggr) : The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known. This is useful for rather complex ions like sulfate (SO) or phosphate (PO). Derivation from the Born–Landé equation Kapustinskii originally proposed the following simpler form, which he faulted as "associated with antiquated concepts of the character of repulsion forces". :U_ = \cdot \frac Here, ''K''' = 1.079 J·m·mol−1. This form of the Kapustinskii equation may be derived as an approximation of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Energy
In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle. Lattice energy and lattice enthalpy The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt (NaCl) and sphalerite (ZnS), where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction : Na+ (g) + Cl− (g) → NaCl (s) which amounts to −786 kJ/mol. Some chemistry textbooks as well as the widely used CRC Handbook of Chemistry and P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ionic Crystal
In chemistry, an ionic crystal is a crystalline form of an ionic compound. They are solids consisting of ions bound together by their electrostatic attraction into a regular Crystal structure, lattice. Examples of such crystals are the alkali halides, including potassium fluoride (KF), potassium chloride (KCl), potassium bromide (KBr), potassium iodide (KI), sodium fluoride (NaF). Sodium chloride (NaCl) has a 6:6 co-ordination. The properties of NaCl reflect the strong interactions that exist between the ions. It is a good Electrical conductor, conductor of electricity when molten, but very poor in the solid state. When fused the mobile ions Charge carrier, carry charge through the liquid. They are characterized by strong absorption of infrared radiation and have planes along which they cleave easily. The exact arrangement of ions in an ionic lattice varies according to the size of the ions in the solid. References External linksArt of the States: Anea
musical work inspired ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anatoli Fedorovich Kapustinskii
Anatoli Fyodorovich Kapustinskii (; 29 December 1906 – 26 August 1960) was a Soviet chemist. He derived the Kapustinskii equation that allows an estimation of the lattice energy of an ionic crystal. Biography Kapustinskii was born in Zhytomyr, Russian Empire (now Ukraine). In 1914 he entered the Warsaw Primary Gymnasium, in 1922 he finished a Secondary School in Moscow. In 1923 he began his studies of chemistry at Moscow State University. He graduated there in 1929. From 1929 to 1941 he worked at the Institute of Applied Mineralogy in Moscow. During this time (1935) he worked in Western Europe and in the United States where he spent about six months working with Gilbert N. Lewis at the University of California. Scientific career * 1933-1937: Professor and Director of the Department of Physical Chemistry of Gor'kii State University. * 1937-1941: Moscow Steel Institute. * 1941-1943: Kazan State University. * from 1943: Department of General and Inorganic Chemistry of the D. I. M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quarterly Reviews, Chemical Society
''Chemical Society Reviews'' is a biweekly peer-reviewed scientific journal published by the Royal Society of Chemistry, for review articles on topics of current interest in chemistry. Its predecessors were ''Quarterly Reviews, Chemical Society'' (1947–1971) and ''Royal Institute of Chemistry, Reviews'' (1968–1971); it maintained its current title since 1971. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 54.564. The current editor-in-chief (Chair of Editorial Board) is Douglas Stephan. ''Chemical Society Reviews'' publishes occasional themed issues on new and emerging areas of research in the chemical sciences. These issues are edited by a guest editor who is a specialist in their field. Since 2005, ''Chemical Society Reviews'' has published reviews on topics of broad appeal, termed "social interest" reviews, such as articles on art conservation, forensics, and automotive fuels. The journal is abstracted and indexed in PubMed/MEDLINE ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Royal Society Of Chemistry
The Royal Society of Chemistry (RSC) is a learned society (professional association) in the United Kingdom with the goal of "advancing the chemistry, chemical sciences". It was formed in 1980 from the amalgamation of the Chemical Society, the Royal Institute of Chemistry, the Faraday Society, and the Society for Analytical Chemistry with a new Royal Charter and the dual role of learned society and professional body. At its inception, the Society had a combined membership of 34,000 in the UK and a further 8,000 abroad. The headquarters of the Society are at Burlington House, Piccadilly, London. It also has offices in Thomas Graham House in Cambridge (named after Thomas Graham (chemist), Thomas Graham, the first president of the Chemical Society) where ''RSC Publishing'' is based. The Society has offices in the United States, on the campuses of The University of Pennsylvania and Drexel University, at the University City Science Center in Philadelphia, Pennsylvania, in both Beijing a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ionic Radius
Ionic radius, ''r''ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 31 pm (0.3 Å) to over 200 pm (2 Å). The concept can be extended to solvated ions in liquid solutions taking into consideration the solvation shell. Trends Ions may be larger or smaller than the neutral atom, depending on the ion's electric charge. When an atom loses an electron to form a cation, the other electrons are more attracted to the nucleus, and the radius of the ion gets smaller. Similarly, when an electron is added to an atom, forming an anion, the added electron increases the size of the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sulfate
The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid. Spelling "Sulfate" is the spelling recommended by IUPAC, but "sulphate" was traditionally used in British English. Structure The sulfate anion consists of a central sulfur atom surrounded by four equivalent oxygen atoms in a tetrahedral arrangement. The symmetry is the same as that of methane. The sulfur atom is in the +6 oxidation state while the four oxygen atoms are each in the −2 state. The sulfate ion carries an overall charge of −2 and it is the conjugate base of the bisulfate (or hydrogensulfate) ion, , which is in turn the conjugate base of , sulfuric acid. Organic sulfate esters, such as dimethyl sulfate, are covalent compounds and esters of sulfuric acid. The tetrahedral molecular geometry of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phosphate
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosphoric acid by the removal of three protons . Removal of one or two protons gives the dihydrogen phosphate ion and the hydrogen phosphate ion ion, respectively. These names are also used for salts of those anions, such as ammonium dihydrogen phosphate and trisodium phosphate. File:3-phosphoric-acid-3D-balls.png, Phosphoricacid File:2-dihydrogenphosphate-3D-balls.png, Dihydrogenphosphate File:1-hydrogenphosphate-3D-balls.png, Hydrogenphosphate File:0-phosphate-3D-balls.png, Phosphate In organic chemistry, phosphate or orthophosphate is an organophosphate, an ester of orthophosphoric acid of the form where one or more hydrogen atoms are replaced by organic groups. An example is trimethyl phosphate, . The term also refers to the triv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Born–Landé Equation
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term. :E =- \frac\left(1-\frac\right) where: *''N''A = Avogadro constant; *''M'' = Madelung constant, relating to the geometry of the crystal; *''z''+ = numeric charge number of cation *''z''− = numeric charge number of anion *''e'' = elementary charge, 1.6022 C *''ε''0 = permittivity of free space *:4π''ε''0 = 1.112 C2/(J·m) *''r''0 = distance between closest cation +ve & anion -ve *''n'' = Born exponent, typically a number between 5 and 12, determined experimentally by measuring the compressibility of the solid, or derived theoretically. *E = Lattice energy is expressed by 'E' . Derivation The ionic lattice is modeled as an assembly of hard elastic spheres which are compressed to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Madelung Constant
The Madelung constant is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist. Because the anions and cations in an ionic solid attract each other by virtue of their opposing charges, separating the ions requires a certain amount of energy. This energy must be given to the system in order to break the anion–cation bonds. The energy required to break these bonds for one mole of an ionic solid under standard conditions is the lattice energy. Formal expression The Madelung constant allows for the calculation of the electric potential V_i of all ions of the lattice felt by the ion at position r_i :V_i = \frac \sum_ \frac\,\! where r_ = , r_i-r_j, is the distance between the i^ and the j^ ion. In addition, :z_j = number of charges of the j^ ion :e= 1.6022 C :4\pi \epsilon_0= . If the distances r_ are normalized to the nearest neighbor distance r_0, the potent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Born–Haber Cycle
The Born–Haber cycle is an approach to analyze reaction energies. It was named after the two German scientists Max Born and Fritz Haber, who developed it in 1919. It was also independently formulated by Kasimir Fajans and published concurrently in the same issue of the same journal. The cycle is concerned with the formation of an ionic compound from the reaction of a metal (often a Group I or Group II element) with a halogen or other non-metallic element such as oxygen. Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpyThe difference between energy and enthalpy is very small and the two terms are interchanged freely in this article.), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process), or sometimes defined as the energy to break the ionic compound into gaseous ions (an endothermic process). A Born ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chemical Bonding
A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force and hydrogen bonding. Strong chemical bonding arises from the sharing or transfer of electrons between the participating atoms. Since opposite electric charges attract, the negatively charged electrons surrounding the nucleus and the positively charged protons within a nucleus attract each other. An electron positioned between two nuclei will be attracted to both of them, and the nuclei will be attracted toward electrons in this position. This attraction constitutes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]