HOME
*





Kantowski–Sachs Metric
In general relativity the Kantowski-Sachs metric (named after Ronald Kantowski and Rainer K. Sachs) describes a homogeneous but anisotropic universe whose spatial section has the topology of \mathbb \times S^. The metric is: : ds^ = -dt^ + e^ dz^ + \frac(d\theta^ + \sin^\theta d\phi^) The isometry group of this spacetime is \mathbb \times SO(3). Remarkably, the isometry group does not act simply transitively on spacetime, nor does it possess a subgroup with simple transitive action. See also *Bianchi classification *Dust solution In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has ' ... Notes General relativity Physical cosmology {{relativity-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ronald Kantowski
Ronald Kantowski (18 December 1939) is a theoretical cosmologist, well known in the field of general relativity as the author, together with Rainer K. Sachs, of the Kantowski–Sachs dust solutions to the Einstein field equation. These are a widely used family of inhomogeneous cosmological models. Life and career Kantowski received his Ph.D. in 1966 from the University of Texas at Austin, where he wrote a dissertation on cosmological models Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of f .... He was a research scientist at the South West Center for Advanced Studies during 1967-1968. He was hired by the Physics & Astronomy department of the University of Oklahoma in 1968, where he became a full professor in 1981. Besides the Kantowski-Sachs solutions to the Einstein's field equatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rainer K
Rainer may refer to: People * Rainer (surname) * Rainer (given name) Other * Rainer Island, an island in Franz Josef Land, Russia * 16802 Rainer, an asteroid * Rainer Foundation, British charitable organisation See also * Rainier (other) * Rayner (other) * Raynor * Reiner (other) * Reyner Reyner is a surname, and has also been used as a given name. Notable people with the name include: * Reyner Banham (1922–1988), English architectural critic * Clement Reyner (1589–1651), English Benedictine monk * Edward Reyner (1600–c.166 ...
* {{dab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homogeneous
Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous is distinctly nonuniform in at least one of these qualities. Heterogeneous Mixtures, in chemistry, is where certain elements are unwillingly combined and, when given the option, will separate. Etymology and spelling The words ''homogeneous'' and ''heterogeneous'' come from Medieval Latin ''homogeneus'' and ''heterogeneus'', from Ancient Greek ὁμογενής (''homogenēs'') and ἑτερογενής (''heterogenēs''), from ὁμός (''homos'', “same”) and ἕτερος (''heteros'', “other, another, different”) respectively, followed by γένος (''genos'', “kind”); - ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anisotropic
Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties (absorbance, refractive index, conductivity, tensile strength, etc.). An example of anisotropy is light coming through a polarizer. Another is wood, which is easier to split along its grain than across it. Fields of interest Computer graphics In the field of computer graphics, an anisotropic surface changes in appearance as it rotates about its geometric normal, as is the case with velvet. Anisotropic filtering (AF) is a method of enhancing the image quality of textures on surfaces that are far away and steeply angled with respect to the point of view. Older techniques, such as bilinear and trilinear filtering, do not take into account the angle a surface is viewed from, which can result in aliasing or bl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection. Isometries are often used in constructions where one space i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bianchi Classification
In mathematics, the Bianchi classification provides a list of all real 3-dimensional Lie algebras (up to isomorphism). The classification contains 11 classes, 9 of which contain a single Lie algebra and two of which contain a continuum-sized family of Lie algebras. (Sometimes two of the groups are included in the infinite families, giving 9 instead of 11 classes.) The classification is important in geometry and physics, because the associated Lie groups serve as symmetry groups of 3-dimensional Riemannian manifolds. It is named for Luigi Bianchi, who worked it out in 1898. The term "Bianchi classification" is also used for similar classifications in other dimensions and for classifications of complex Lie algebras. Classification in dimension less than 3 * Dimension 0: The only Lie algebra is the abelian Lie algebra R0. * Dimension 1: The only Lie algebra is the abelian Lie algebra R1, with outer automorphism group the multiplicative group of non-zero real numbers. * Dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dust Solution
In general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has ''positive mass density'' but ''vanishing pressure''. Dust solutions are an important special case of fluid solutions in general relativity. Dust model A pressureless perfect fluid can be interpreted as a model of a configuration of ''dust particles'' that locally move in concert and interact with each other only gravitationally, from which the name is derived. For this reason, dust models are often employed in cosmology as models of a toy universe, in which the dust particles are considered as highly idealized models of galaxies, clusters, or superclusters. In astrophysics, dust models have been employed as models of gravitational collapse. Dust solutions can also be used to model finite rotating disks of dust grains; some examples are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]