K2K
   HOME
*





K2K
The K2K experiment (KEK to Kamioka Observatory, Kamioka) was a List of neutrino experiments, neutrino experiment that ran from June 1999 to November 2004. It used muon neutrinos from a well-controlled and well-understood particle beam, beam to verify the neutrino oscillation, oscillations previously observed by Super-Kamiokande using Neutrino#Atmospheric neutrinos, atmospheric neutrinos. This was the first positive measurement of neutrino oscillations in which both the source and detector were fully under experimenters' control. Previous experiments relied on neutrinos Neutrino#Solar neutrinos, from the Sun or from cosmic ray, cosmic sources. The experiment found oscillation parameters which were consistent with those measured by Super-Kamiokande. Experimental design K2K is a List of neutrino experiments, neutrino experiment which directed a Accelerator neutrino, beam of muon neutrinos () from the proton synchrotron at the KEK, located in Tsukuba, Ibaraki, Tsukuba, Ibaraki Prefec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Super-Kamiokande
Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ja, スーパーカミオカンデ) is a neutrino observatory located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan. It is located underground in the Mozumi Mine in Hida's Kamioka area. The observatory was designed to detect high-energy neutrinos, to search for proton decay, study solar and atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy. It consists of a cylindrical stainless steel tank about in height and diameter holding 50,000 metric tons (55,000 US tons) of ultrapure water. Mounted on an inside superstructure are about 13,000 photomultiplier tubes that detect light from Cherenkov radiation. A neutrino interaction with the electrons or nuclei of water can produce an electron or positron that moves faster than the speed of light in water, which is slower than the speed of light in a vacuum. This creates a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Super-k
Super-Kamiokande (abbreviation of Super-Kamioka Neutrino Detection Experiment, also abbreviated to Super-K or SK; ja, スーパーカミオカンデ) is a neutrino observatory located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan. It is located underground in the Mozumi Mine in Hida's Kamioka area. The observatory was designed to detect high-energy neutrinos, to search for proton decay, study solar and atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy. It consists of a cylindrical stainless steel tank about in height and diameter holding 50,000 metric tons (55,000 US tons) of ultrapure water. Mounted on an inside superstructure are about 13,000 photomultiplier tubes that detect light from Cherenkov radiation. A neutrino interaction with the electrons or nuclei of water can produce an electron or positron that moves faster than the speed of light in water, which is slower than the speed of light in a vacuum. This creates a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kamioka Observatory
The is a neutrino and gravitational waves laboratory located underground in the Mozumi mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan. A set of groundbreaking neutrino experiments have taken place at the observatory over the past two decades. All of the experiments have been very large and have contributed substantially to the advancement of particle physics, in particular to the study of neutrino astronomy and neutrino oscillation. The mine The Mozumi mine is one of two adjacent mines owned by the Kamioka Mining and Smelting Co. (a subsidiary of the Mitsui Mining and Smelting Co. Mitsui Kinzoku'). The mine is famous as the site of one of the greatest mass-poisonings in Japanese history. From 1910 to 1945, the mine operators released cadmium from the processing plant into the local water. This cadmium caused what the locals called itai-itai disease. The disease caused weakening of the bones and extreme pain. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Accelerator Neutrino
An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons (mainly pions) which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources. Muon neutrino beam production The process of the muon neutrino or muon antineutrino beam production consists of the following steps: * Acceleration of a primary proton beam in a particle accelerator. * Proton beam collision with a fixed target. In such a collis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Flavour (particle Physics)
In particle physics, flavour or flavor refers to the ''species'' of an elementary particle. The Standard Model counts six flavours of quarks and six flavours of leptons. They are conventionally parameterized with ''flavour quantum numbers'' that are assigned to all subatomic particles. They can also be described by some of the family symmetries proposed for the quark-lepton generations. Quantum numbers In classical mechanics, a force acting on a point-like particle can only alter the particle's dynamical state, i.e., its momentum, angular momentum, etc. Quantum field theory, however, allows interactions that can alter other facets of a particle's nature described by non dynamical, discrete quantum numbers. In particular, the action of the weak force is such that it allows the conversion of quantum numbers describing mass and electric charge of both quarks and leptons from one discrete type to another. This is known as a flavour change, or flavour transmutation. Due to their qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electron Neutrino
The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment). Proposal In the early 1900s, theories predicted that the electrons resulting from beta decay should have been emitted at a specific energy. However, in 1914, James Chadwick showed that electrons were instead emitted in a continuous spectrum. : → + :The early understanding of beta decay In 1930, Wolfgang Pauli theorized that an undetected particle was carrying away the observed difference between the energy, momentum, and angular momentum of the initial and final particles.Niels Bohr was notably opposed to this interpretation of beta decay ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions and decaying after a mean lifetime of 26.033 nanoseconds ( seconds), and the neutral pion decaying after a much shorter lifetime of 85  attoseconds ( seconds). Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays. The exchange of virtual pions, along with vector, rho and omega mesons, provides an explanation for the residual strong force between nucleons. Pions are not produced in radioactive decay, but commonly are in high-energy collisions between hadrons. Pions also result from some matter–antimatter annihilation events. All types of pions are also produced in natural processes wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has a great affinity towards oxygen, and forms a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver, both in its color and in its great ability to reflect light. It is soft, non-magnetic and ductile. It has one stable isotope, 27Al; this isotope is very common, making aluminium the twelfth most common element in the Universe. The radioactivity of 26Al is used in radiodating. Chemically, aluminium is a post-transition metal in the boron group; as is common for the group, aluminium forms compounds primarily in the +3 oxidation state. The aluminium cation Al3+ is small and highly charged; as such, it is polarizing, and bonds aluminium forms tend towards covalency. The strong affinity tow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gifu Prefecture
is a prefecture of Japan located in the Chūbu region of Honshu. Gifu Prefecture has a population of 1,991,390 () and has a geographic area of . Gifu Prefecture borders Toyama Prefecture to the north; Ishikawa Prefecture to the northwest, Fukui Prefecture and Shiga Prefecture to the west, Mie Prefecture to the southwest, Aichi Prefecture to the south, and Nagano Prefecture to the east. Gifu is the capital and largest city of Gifu Prefecture, with other major cities including Ōgaki, Kakamigahara, and Tajimi. Gifu Prefecture is located in the center of Japan, one of only eight landlocked prefectures, and features the country's center of population. Gifu Prefecture has served as the historic crossroads of Japan with routes connecting the east to the west, including the Nakasendō, one of the Five Routes of the Edo period. Gifu Prefecture was a long-term residence of Oda Nobunaga and Saitō Dōsan, two influential figures of Japanese history in the Sengoku period, spawning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Decay
In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the ''final state'') must each be less massive than the original, although the total invariant mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability. Decays are mediated by one or several fundamental forces. The particles in the final state may themselves be unstable and subject to further decay. The term is typically distinct from radioactive decay, in which an unstable atomic nucleus is transformed into a lighter nucleus accompanied by the emission of particles or radiation, although the two are conceptually similar and are often described using the same terminology. Probability of survival and particle lifetime Particle de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]