HOME





K-stability Of Fano Varieties
In mathematics, and in particular algebraic geometry, K-stability is an algebro-geometric stability condition for projective algebraic varieties and complex manifolds. K-stability is of particular importance for the case of Fano varieties, where it is the correct stability condition to allow the formation of moduli spaces, and where it precisely characterises the existence of Kähler–Einstein metrics. K-stability was first defined for Fano manifolds by Gang Tian in 1997 in response to a conjecture of Shing-Tung Yau from 1993 that there should exist a stability condition which characterises the existence of a Kähler–Einstein metric on a Fano manifold. It was defined in reference to the ''K-energy functional'' previously introduced by Toshiki Mabuchi. Tian's definition of K-stability was reformulated by Simon Donaldson in 2001 in a purely algebro-geometric way. K-stability has become an important notion in the study and classification of Fano varieties. In 2012 Xiuxiong Che ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

K-stability
In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics (cscK metrics). History In 1954, Eugenio Calabi formulated a conjecture about the existence of Kähler metrics on compact Kähler manifolds, now known as the Calabi conjecture. One formulation of the conjecture is that a compact Kähler manifold X admits a unique Kähler–Einstein metric in the class c_1(X). In the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE