K-stability Of Fano Varieties
In mathematics, and in particular algebraic geometry, K-stability is an algebro-geometric stability condition for projective algebraic varieties and complex manifolds. K-stability is of particular importance for the case of Fano varieties, where it is the correct stability condition to allow the formation of moduli spaces, and where it precisely characterises the existence of Kähler–Einstein metrics. K-stability was first defined for Fano manifolds by Gang Tian in 1997 in response to a conjecture of Shing-Tung Yau from 1993 that there should exist a stability condition which characterises the existence of a Kähler–Einstein metric on a Fano manifold. It was defined in reference to the ''K-energy functional'' previously introduced by Toshiki Mabuchi. Tian's definition of K-stability was reformulated by Simon Donaldson in 2001 in a purely algebro-geometric way. K-stability has become an important notion in the study and classification of Fano varieties. In 2012 Xiuxiong Chen, D ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
K-stability
In mathematics, and especially differential geometry, differential and algebraic geometry, K-stability is an Algebraic Geometry, algebro-geometric stability condition, for complex manifolds and complex algebraic variety, complex algebraic varieties. The notion of K-stability was first introduced by Tian Gang, Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the K-stability of Fano varieties, special case of Fano variety, Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is #Yau–Tian–Donaldson Conjecture, conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics (cscK metrics). History In 1954, Eugenio Calabi formulated a conjecture about the existence of Kähler metrics on compact Kähler manifolds, now known as the Calabi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Invariant Theory
In mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by Group action (mathematics), group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory. Geometric invariant theory studies an Group action (mathematics), action of a group on an algebraic variety (or scheme (mathematics), scheme) and provides techniques for forming the 'quotient' of by as a scheme with reasonable properties. One motivation was to construct moduli spaces in algebraic geometry as quotients of schemes parametrizing marked objects. In the 1970s and 1980s the theory developed interactions with symplectic geometry and equivariant topology, and was used to construct moduli spaces of objects in differential geometry, such as instantons and monopole (mathematics), monopoles. Background Invariant theory is concerned with a Group action (mathematics), group actio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Toric Varieties
In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable. For a certain special, but still quite general class of toric varieties, this information is also encoded in a polytope, which creates a powerful connection of the subject with convex geometry. Familiar examples of toric varieties are affine space, projective spaces, products of projective spaces and bundles over projective space. Toric varieties from tori The original motivation to study toric varieties was to study torus embeddings. Given the algebrai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logarithmic Pair
In algebraic geometry, a logarithmic pair consists of a variety Variety may refer to: Arts and entertainment Entertainment formats * Variety (radio) * Variety show, in theater and television Films * ''Variety'' (1925 film), a German silent film directed by Ewald Andre Dupont * ''Variety'' (1935 film), ..., together with a divisor along which one allows mild logarithmic singularities. They were studied by . Definition A boundary Q-divisor on a variety is a Q-divisor ''D'' of the form Σ''d''''i''''D''''i'' where the ''D''''i'' are the distinct irreducible components of ''D'' and all coefficients are rational numbers with 0≤''d''''i''≤1. A logarithmic pair, or log pair for short, is a pair (''X'',''D'') consisting of a normal variety ''X'' and a boundary Q-divisor ''D''. The log canonical divisor of a log pair (''X'',''D'') is ''K''+''D'' where ''K'' is the canonical divisor of ''X''. A logarithmic 1-form on a log pair (''X'',''D'') is allowed to have logarithmic sin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gorenstein Scheme
In algebraic geometry, a Gorenstein scheme is a locally Noetherian scheme whose local rings are all Gorenstein. The canonical line bundle is defined for any Gorenstein scheme over a field, and its properties are much the same as in the special case of smooth schemes. Related properties For a Gorenstein scheme ''X'' of finite type over a field, ''f'': ''X'' → Spec(''k''), the dualizing complex ''f''!(''k'') on ''X'' is a line bundle (called the canonical bundle ''K''''X''), viewed as a complex in degree −dim(''X''). If ''X'' is smooth of dimension ''n'' over ''k'', the canonical bundle ''K''''X'' can be identified with the line bundle Ω''n'' of top-degree differential forms. Using the canonical bundle, Serre duality takes the same form for Gorenstein schemes as it does for smooth schemes. Let ''X'' be a normal scheme of finite type over a field ''k''. Then ''X'' is regular outside a closed subset of codimension at least 2. Let ''U'' be the open subset where ''X'' is regula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kawamata Log Terminal
In mathematics, canonical singularities appear as singularities of the canonical model of a projective variety, and terminal singularities are special cases that appear as singularities of minimal models. They were introduced by . Terminal singularities are important in the minimal model program because smooth minimal models do not always exist, and thus one must allow certain singularities, namely the terminal singularities. Definition Suppose that ''Y'' is a normal variety such that its canonical class ''K''''Y'' is Q-Cartier, and let ''f'':''X''→''Y'' be a resolution of the singularities of ''Y''. Then :\displaystyle K_X = f^*(K_Y)+\sum_i a_iE_i where the sum is over the irreducible exceptional divisors, and the ''a''''i'' are rational numbers, called the discrepancies. Then the singularities of ''Y'' are called: :terminal if ''a''''i'' > 0 for all ''i'' :canonical if ''a''''i'' ≥ 0 for all ''i'' :log terminal if ''a''''i'' > −1 for all ''i'' :log canonical if ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartier Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvariet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Birational Geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational map from one variety (understood to be irreducible) X to another variety Y, written as a dashed arrow , is defined as a morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a rational map such that there is a rational map inverse to ''f''. A birational map induces an isomorphism from a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anticanonical Divisor
In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the ''n''th exterior power of the cotangent bundle Ω on ''V''. Over the complex numbers, it is the determinant bundle of holomorphic ''n''-forms on ''V''. This is the dualising object for Serre duality on ''V''. It may equally well be considered as an invertible sheaf. The canonical class is the divisor class of a Cartier divisor ''K'' on ''V'' giving rise to the canonical bundle — it is an equivalence class for linear equivalence on ''V'', and any divisor in it may be called a canonical divisor. An anticanonical divisor is any divisor −''K'' with ''K'' canonical. The anticanonical bundle is the corresponding inverse bundle ω−1. When the anticanonical bundle of V is ample, V is called a Fano variety. The adjunction formula Suppose that ''X'' is a smooth variety and that ''D'' is a smooth divisor on ''X''. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbifold
In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space. Definitions of orbifold have been given several times: by Ichirô Satake in the context of automorphic forms in the 1950s under the name ''V-manifold''; by William Thurston in the context of the geometry of 3-manifolds in the 1970s when he coined the name ''orbifold'', after a vote by his students; and by André Haefliger in the 1980s in the context of Mikhail Gromov's programme on CAT(k) spaces under the name ''orbihedron''. Historically, orbifolds arose first as surfaces with singular points long before they were formally defined. One of the first classical examples arose in the theory of modular forms with the action of the modular group \mathrm(2,\Z) on the upper half-plane: a version of the Riemann–Roch theorem holds after the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fields Medal
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award honours the Canadian mathematician John Charles Fields. The Fields Medal is regarded as one of the highest honors a mathematician can receive, and has been described as the Nobel Prize of Mathematics, although there are several major differences, including frequency of award, number of awards, age limits, monetary value, and award criteria. According to the annual Academic Excellence Survey by ARWU, the Fields Medal is consistently regarded as the top award in the field of mathematics worldwide, and in another reputation survey conducted by IREG in 2013–14, the Fields Medal came closely after the Abel Prize as the second most prestigious international award in mathematics. The prize includes a monetary award which, since 2006, has bee ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Caucher Birkar
Caucher Birkar ( ku, کۆچەر بیرکار, lit=migrant mathematician, translit=Koçer Bîrkar; born Fereydoun Derakhshani ( fa, فریدون درخشانی); July 1978) is an Iranian Kurdish mathematician and a professor at Tsinghua University and University of Cambridge. Birkar is an important contributor to modern birational geometry. In 2010 he received the Leverhulme Prize in mathematics and statistics for his contributions to algebraic geometry, and in 2016, shared the AMS Moore Prize for the article "Existence of minimal models for varieties of log general type". He was awarded the Fields Medal in 2018, "for his proof of boundedness of Fano varieties and contributions to the minimal model program". In his office at the University, Birkar has two photographs of Alexander Grothendieck, his favorite mathematician, who like Birkar, was a refugee and Fields medalist. Early life and education Birkar is a Kurd, born in 1978 in Marivan County, Kurdistan province, Iran, on a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |