Joseph Ludwig Raabe
   HOME
*



picture info

Joseph Ludwig Raabe
Joseph Ludwig Raabe (15 May 1801 in Brody, Galicia – 22 January 1859 in Zürich, Switzerland) was a Swiss mathematician. Life As his parents were quite poor, Raabe was forced to earn his living from a very early age by giving private lessons. He began to study mathematics in 1820 at the Polytechnicum in Vienna, Austria. In the autumn of 1831, he moved to Zürich, where he became professor of mathematics in 1833. In 1855, he became professor at the newly founded Swiss Polytechnicum. He is best known for Raabe's ratio test, an extension of d'Alembert's ratio test. Raabe's test serves to determine the convergence or divergence of an infinite series, in some cases. He is also known for the Raabe integral of the gamma function In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except ...:. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joseph Ludwig Raabe
Joseph Ludwig Raabe (15 May 1801 in Brody, Galicia – 22 January 1859 in Zürich, Switzerland) was a Swiss mathematician. Life As his parents were quite poor, Raabe was forced to earn his living from a very early age by giving private lessons. He began to study mathematics in 1820 at the Polytechnicum in Vienna, Austria. In the autumn of 1831, he moved to Zürich, where he became professor of mathematics in 1833. In 1855, he became professor at the newly founded Swiss Polytechnicum. He is best known for Raabe's ratio test, an extension of d'Alembert's ratio test. Raabe's test serves to determine the convergence or divergence of an infinite series, in some cases. He is also known for the Raabe integral of the gamma function In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except ...:. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brody
Brody ( uk, Броди; russian: Броды, Brodï; pl, Brody; german: Brody; yi, בראָד, Brod) is a city in Zolochiv Raion of Lviv Oblast (province) of western Ukraine. It is located in the valley of the upper Styr River, approximately northeast of the oblast capital, Lviv. Brody hosts the administration of Brody urban hromada, one of the hromadas of Ukraine. Population: . Brody is the junction of the '' Druzhba'' and '' Odessa–Brody'' oil pipelines. History The first mention of a settlement on the site of Brody is dated 1084 ( Instructions by Vladimir Monomach). It is believed to have been destroyed by Batu Khan in 1241. Polish Kingdom From 1441 Brody was the property of different feudal families (Jan Sieniński; from 1511, Kamieniecki). Brody was granted Magdeburg town rights by Polish King Stephen Báthory by virtue of a privilege issued in Lublin on August 22, 1584.Sadok Barącz, ''Wolne miasto handlowe Brody'', Lwów, 1865, p. 7 (in Polish) It was named Lu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galicia (Central Europe)
Galicia ()"Galicia"
''''
( uk, Галичина, translit=Halychyna ; pl, Galicja; yi, גאַליציע) is a historical and geographic region spanning what is now southeastern and western , long part of the . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zürich
Zürich () is the list of cities in Switzerland, largest city in Switzerland and the capital of the canton of Zürich. It is located in north-central Switzerland, at the northwestern tip of Lake Zürich. As of January 2020, the municipality has 434,335 inhabitants, the Urban agglomeration, urban area 1.315 million (2009), and the Zürich metropolitan area 1.83 million (2011). Zürich is a hub for railways, roads, and air traffic. Both Zurich Airport and Zürich Hauptbahnhof, Zürich's main railway station are the largest and busiest in the country. Permanently settled for over 2,000 years, Zürich was founded by the Roman Empire, Romans, who called it '. However, early settlements have been found dating back more than 6,400 years (although this only indicates human presence in the area and not the presence of a town that early). During the Middle Ages, Zürich gained the independent and privileged status of imperial immediacy and, in 1519, became a primary centre of the Protestant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One of the earliest known mathematicians were Thales of Miletus (c. 624–c.546 BC); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. The number of known mathematicians grew when Pythagoras of Samos (c. 582–c. 507 BC) established the Pythagorean School, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was Hypati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vienna
en, Viennese , iso_code = AT-9 , registration_plate = W , postal_code_type = Postal code , postal_code = , timezone = CET , utc_offset = +1 , timezone_DST = CEST , utc_offset_DST = +2 , blank_name = Vehicle registration , blank_info = W , blank1_name = GDP , blank1_info = € 96.5 billion (2020) , blank2_name = GDP per capita , blank2_info = € 50,400 (2020) , blank_name_sec1 = HDI (2019) , blank_info_sec1 = 0.947 · 1st of 9 , blank3_name = Seats in the Federal Council , blank3_info = , blank_name_sec2 = GeoTLD , blank_info_sec2 = .wien , website = , footnotes = , image_blank_emblem = Wien logo.svg , blank_emblem_size = Vienna ( ; german: Wien ; ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Raabe's Ratio Test
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series :\sum_^\infty a_n, where each term is a real or complex number and is nonzero when is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The test The usual form of the test makes use of the limit The ratio test states that: * if ''L'' 1 then the series diverges; * if ''L'' = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case. It is possible to make the ratio test applicable to certain cases where the limit ''L'' fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when ''L'' = 1. More specifically, let :R = \lim\sup \left, \frac\ :r = \lim\inf \left, \frac\. Then the ratio test states that: * if ''R'' 1, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

D'Alembert's Ratio Test
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series :\sum_^\infty a_n, where each term is a real or complex number and is nonzero when is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The test The usual form of the test makes use of the limit The ratio test states that: * if ''L'' 1 then the series diverges; * if ''L'' = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case. It is possible to make the ratio test applicable to certain cases where the limit ''L'' fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when ''L'' = 1. More specifically, let :R = \lim\sup \left, \frac\ :r = \lim\inf \left, \frac\. Then the ratio test states that: * if ''R'' 1, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergent Series
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_0, a_1, a_2, \ldots) defines a series that is denoted :S=a_0 +a_1+ a_2 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = \sum_^n a_k. A series is convergent (or converges) if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers of 2 also produces a convergent series: *: -+-+-+\cdots = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divergent Series
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent ser ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Series (mathematics)
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginning of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer , \Gamma(n) = (n-1)!\,. Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: \Gamma(z) = \int_0^\infty t^ e^\,dt, \ \qquad \Re(z) > 0\,. The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeroes, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: \Gamma(z) = \mathcal M \ (z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]