Jones (unit)
   HOME
*





Jones (unit)
Specific detectivity, or ''D*'', for a photodetector is a figure of merit used to characterize performance, equal to the reciprocal of noise-equivalent power (NEP), normalized per square root of the sensor's area and frequency bandwidth (reciprocal of twice the integration time). Specific detectivity is given by D^*=\frac, where A is the area of the photosensitive region of the detector, \Delta f is the bandwidth, and NEP the noise equivalent power in units It is commonly expressed in ''Jones'' units (cm \cdot \sqrt/ W) in honor of Robert Clark Jones who originally defined it.R. C. Jones, "Proposal of the detectivity D** for detectors limited by radiation noise," ''J. Opt. Soc. Am.'' 50, 1058 (1960), ) Given that noise-equivalent power can be expressed as a function of the responsivity \mathfrak (in units of A/W or V/W) and the noise spectral density S_n (in units of A/Hz^ or V/Hz^) as NEP=\frac, it is common to see the specific detectivity expressed as D^*=\frac. It is often u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photodetector
Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy. Types Photodetectors may be classified by their mechanism for detection: * Photoemission or photoelectric effect: Photons cause electrons to transition from the conduction band of a material to free electrons in a vacuum or gas. * Thermal: Photons cause electrons to transition to mid-gap states then decay back to lower bands, inducin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Figure Of Merit
A figure of merit is a quantity used to characterize the performance of a device, system or method, relative to its alternatives. Examples *Clock rate of a CPU *Calories per serving *Contrast ratio of an LCD *Frequency response of a speaker * Fill factor of a solar cell * Resolution of the image sensor in a digital camera *Measure of the detection performance of a sonar system, defined as the propagation loss for which a 50% detection probability is achieved * Noise figure of a radio receiver *The thermoelectric figure of merit, ''zT'', a material constant proportional to the efficiency of a thermoelectric couple made with the material *The figure of merit of digital-to-analog converter, calculated as (power dissipation)/(2ENOB × effective bandwidth) /Hz* Luminous efficacy of lighting *Profit of a company *Residual noise remaining after compensation in an aeromagnetic survey *Battery life of a laptop computer
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noise-equivalent Power
Noise-equivalent power (NEP) is a measure of the sensitivity of a photodetector or detector system. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output bandwidth. An output bandwidth of one hertz is equivalent to half a second of integration time.The factor of one half is explained by the Nyquist–Shannon sampling theorem. The units of NEP are watts per square root hertz. The NEP is equal to the noise spectral density (expressed in units of \mathrm/\sqrt or \mathrm/\sqrt) divided by the responsivity (expressed in units of \mathrm/\mathrm or \mathrm/\mathrm, respectively). The fundamental equation is SNR = P/NEP. A smaller NEP corresponds to a more sensitive detector. For example, a detector with an NEP of 10^ \mathrm/\sqrt can detect a signal power of one picowatt with a signal-to-noise ratio (SNR) of one after one half second of averaging. The SNR improves as the square root of the averaging time, and hence the SNR in this example can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Clark Jones
R. Clark Jones (June 30, 1916April 26, 2004) was an American physicist working in the field of optics. He studied at Harvard University and received his PhD in 1941. Until 1944 he worked at Bell Labs, later until 1982 with the Polaroid Corporation. In a sequence of publications between 1941 and 1956 he demonstrated a mathematical model to describe the polarization of coherent light, the Jones calculus. When William Shurcliff wrote ''Polarized Light: Production and Use'' he praised R. C. Jones in the preface: "The author’s debt to Dr. R. Clark Jones, the inventor of the Jones calculus, is immeasurable. The sections dealing with the Stokes vector, the Mueller calculus, and the Jones calculus could not have been written without long and painstaking coaching by him." William Shurcliff (1962) ''Polarized Light: Production and Use'', Harvard University Press Publications * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Responsivity
Responsivity measures the input–output gain of a detector system. In the specific case of a photodetector, it measures the electrical output per optical input. A photodetector's responsivity is usually expressed in units of amperes or volts per watt of incident radiant power. For a system that responds linearly to its input, there is a unique responsivity. For nonlinear systems, the responsivity is the local slope. Many common photodetectors respond linearly as a function of the incident power. Responsivity is a function of the wavelength of the incident radiation and of the sensor's properties, such as the bandgap of the material of which the photodetector is made. One simple expression for the responsivity ''R'' of a photodetector in which an optical signal is converted into an electric current (known as a photocurrent) is R=\eta\frac\approx\eta\frac where \eta is the quantum efficiency (the conversion efficiency of photons to electrons) of the detector for a given wave ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noise Spectral Density
In communications, noise spectral density (NSD), noise power density, noise power spectral density, or simply noise density (''N''0) is the power spectral density of noise or the noise power per unit of bandwidth. It has dimension of power over frequency, whose SI unit is watt per hertz (equivalent to watt-second or joule). It is commonly used in link budgets as the denominator of the important figure-of-merit ratios, such as carrier-to-noise-density ratio as well as ''E''''b''/''N''0 and ''E''''s''/''N''0. If the noise is one-sided white noise, i.e., constant with frequency, then the total noise power ''N'' integrated over a bandwidth ''B'' is ''N'' = ''BN''0 (for double-sided white noise, the bandwidth is doubled, so ''N'' is ''BN''0/2). This is utilized in signal-to-noise ratio calculations. For thermal noise, its spectral density is given by ''N''0 = ''kT'', where ''k'' is the Boltzmann constant in joules per kelvin, and ''T'' is the receiver system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root Mean Square
In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the squares) of the set. The RMS is also known as the quadratic mean (denoted M_2) and is a particular case of the generalized mean. The RMS of a continuously varying function (denoted f_\mathrm) can be defined in terms of an integral of the squares of the instantaneous values during a cycle. For alternating electric current, RMS is equal to the value of the constant direct current that would produce the same power dissipation in a resistive load. In estimation theory, the root-mean-square deviation of an estimator is a measure of the imperfection of the fit of the estimator to the data. Definition The RMS value of a set of values (or a continuous-time waveform) is the square root of the arithmetic mean of the squares of the values, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solid Angle
In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the ''apex'' of the solid angle, and the object is said to ''subtend'' its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a '' steradian'' (symbol: sr). One steradian corresponds to one unit of area on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, 4\pi. Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds. A small object nearby may subtend the same solid angle as a larger object farther away. For example, although the Moon is much smaller ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Etendue
Etendue or étendue (; ) is a property of light in an optical system, which characterizes how "spread out" the light is in area and angle. It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent, and the AΩ product. ''Throughput'' and ''AΩ product'' are especially used in radiometry and radiative transfer where it is related to the view factor (or shape factor). It is a central concept in nonimaging optics.Roland Winston et al.,, ''Nonimaging Optics'', Academic Press, 2004 Matthew S. Brennesholtz, Edward H. Stupp, ''Projection Displays'', John Wiley & Sons Ltd, 2008 From the source point of view, etendue is the product of the area of the source and the solid angle that the system's entrance pupil subtends as seen from the source. Equivalently, from the system point of view, the etendue equals the area of the entrance pupil times the solid angle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Black-body Radiation
Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spectrum of wavelengths, inversely related to intensity, that depend only on the body's temperature, which is assumed, for the sake of calculations and theory, to be uniform and constant., Chapter 13. A perfectly insulated enclosure which is in thermal equilibrium internally contains black-body radiation, and will emit it through a hole made in its wall, provided the hole is small enough to have a negligible effect upon the equilibrium. The thermal radiation spontaneously emitted by many ordinary objects can be approximated as black-body radiation. Of particular importance, although planets and stars (including the Earth and Sun) are neither in thermal equilibrium with their surroundings nor perfect black bodies, black-body radiation is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Quantities
A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For example, the physical quantity of mass can be quantified as '32.3 kg ', where '32.3' is the numerical value and 'kg' is the Unit. A physical quantity possesses at least two characteristics in common. # Numerical magnitude. # Units Symbols and nomenclature International recommendations for the use of symbols for quantities are set out in ISO/IEC 80000, the IUPAP red book and the IUPAC green book. For example, the recommended symbol for the physical quantity ''mass'' is ''m'', and the recommended symbol for the quantity ''electric charge'' is ''Q''. Subscripts and indices Subscripts are used for two reasons, to simply attach a name to the quantity or associate it with another quantity, or index a specific component (e.g., row or co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]