Jean Léonard Marie Poiseuille
   HOME
*





Jean Léonard Marie Poiseuille
Jean Léonard Marie Poiseuille (; 22 April 1797 – 26 December 1869) was a French physicist and physiologist. Poiseuille was born in Paris, France, and he died there on 26 December 1869. Fluid flow From 1815 to 1816 he studied at the École Polytechnique in Paris. He was trained in physics and mathematics. In 1828 he earned his D.Sc. degree with a dissertation entitled ''Recherches sur la force du coeur aortique''. He was interested in the flow of human blood in narrow tubes. In 1838 he experimentally derived, and in 1840 and 1846 formulated and published, Poiseuille's law (now commonly known as the Hagen–Poiseuille equation, crediting Gotthilf Hagen as well), which applies to laminar flow, that is, non-turbulent flow of liquids through pipes of uniform section, such as blood flow in capillaries and veins. His original formulation for water of 1846 little resembles the present-day formulation and is given as: : \dot = \left(135.282 \mathrm \right) \frac \left(1+\frac\,T + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paris
Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. Since the 17th century, Paris has been one of the world's major centres of finance, diplomacy, commerce, fashion, gastronomy, and science. For its leading role in the arts and sciences, as well as its very early system of street lighting, in the 19th century it became known as "the City of Light". Like London, prior to the Second World War, it was also sometimes called the capital of the world. The City of Paris is the centre of the Île-de-France region, or Paris Region, with an estimated population of 12,262,544 in 2019, or about 19% of the population of France, making the region France's primate city. The Paris Region had a GDP of €739 billion ($743 billion) in 2019, which is the highest in Europe. According to the Economist Intelli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annual Review Of Fluid Mechanics
''Annual Review of Fluid Mechanics'' is a peer-reviewed scientific journal covering research on fluid mechanics. It is published once a year by Annual Reviews and the editors are Parviz Moin and Howard Stone. As of 2022, ''Journal Citation Reports'' gives the journal a 2021 impact factor of 25.293, ranking it first out of 34 journals in "Physics, Fluids and Plasmas" and first out of 138 journals in the category "Mechanics". History The ''Annual Review of Fluid Mechanics'' was first published in 1969 by the nonprofit publisher Annual Reviews. Its inaugural editor was William R. Sears. Taking after the ''Annual Review of Biochemistry'', each volume typically begins with a prefatory chapter in which a notable scientist in the field reflects on their career and accomplishments. As of 2020, it was published both in print and electronically. Some of its articles are available online in advance of the volume's publication date. It defines its scope as covering significant developmen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Rheology
''Journal of Rheology'' is a peer-reviewed scientific journal publishing original (primary) research on all aspects of rheology, the study of those properties of materials which determine their response to mechanical force. It is published bi-monthly by the Society of Rheology through the American Institute of Physics. The editor-in-chief of ''Journal of Rheology'' is Dimitris Vlassopoulos. Publication history The publication of ''Journal of Rheology'' has seen three phases. The journal was first published as ''Journal of Rheology'' between 1929 and 1932. In 1933 the journal was subsumed as a section (called Rheology Numbers) of the journal ''Physics'', and then the ''Journal of Applied Physics. '' From 1957, the Society of Rheology reestablished the journal as a separate publication, initially named ''Transactions of the Society of Rheology'', renamed ''Journal of Rheology'' from 1977. Abstracting and indexing ''Journal of Rheology'' is abstracted and indexed in the foll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second
The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of Units ( SI) is more precise:The second ..is defined by taking the fixed numerical value of the caesium frequency, Δ''ν''Cs, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be when expressed in the unit Hz, which is equal to s−1. This current definition was adopted in 1967 when it became feasible to define the second based on fundamental properties of nature with caesium clocks. Because the speed of Earth's rotation varies and is slowing ever so slightly, a leap second is added at irregular intervals to civil time to keep clocks in sync with Earth's rotation. Uses Analog clocks and watches often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pascal (unit)
The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI), and is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is defined as one newton per square metre and is equivalent to 10 barye (Ba) in the CGS system. The unit of measurement called standard atmosphere (atm) is defined as 101,325 Pa. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar, and the kilopascal (1 kPa = 1000 Pa), which is equal to one centibar. Meteorological observations typically report atmospheric pressure in hectopascals per the recommendation of the World Meteorological Organization, thus a standard atmosphere (atm) or typical sea-level air pressure is about 1013 hPa. Reports in the United States typically use inches of mercury or millibars (hectopascals). In Canada these reports are given in kilopascal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Système International
The International System of Units, known by the international abbreviation SI in all languages and sometimes Pleonasm#Acronyms and initialisms, pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. Established and maintained by the General Conference on Weights and Measures (CGPM), it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI comprises a Coherence (units of measurement), coherent system of units of measurement starting with seven SI base unit, base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), Mole (unit), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional qua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Poiseuille
The poiseuille (symbol Pl) has been proposed as a derived SI unit of dynamic viscosity, named after the French physicist Jean Léonard Marie Poiseuille (1797–1869). In practice the unit has never been widely accepted and most international standards bodies do not include the poiseuille in their list of units. The third edition of the IUPAC Green Book, for example, lists Pa⋅s (pascal-second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...) as the SI-unit for dynamic viscosity, and does not mention the poiseuille. The equivalent CGS unit, the poise, symbol P, is most widely used when reporting viscosity measurements. :1\ \text = 1\ \text\text = 1 \text/\text\text = 1 \text\text/\text^ = 10\ \text\text/\text^ = 10\ \text Liquid water has a viscosity of at at a pressure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centimetre Gram Second System Of Units
330px, Different lengths as in respect to the Electromagnetic spectrum, measured by the Metre and its deriveds scales. The Microwave are in-between 1 meter to 1 millimeter. A centimetre (international spelling) or centimeter (American spelling) (SI symbol cm) is a Units of measurement, unit of length in the International System of Units (SI), equal to one hundredth of a metre, ''centi'' being the SI prefix for a factor of . The centimetre was the base unit of length in the now deprecated centimetre–gram–second (CGS) system of units. Though for many physical quantities, SI prefixes for factors of 103—like ''milli-'' and ''kilo-''—are often preferred by technicians, the centimetre remains a practical unit of length for many everyday measurements. A centimetre is approximately the width of the fingernail of an average adult person. Equivalence to other units of length : One millilitre is defined as one cubic centimetre, under the SI system of units. Other uses In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poise (unit)
The poise (symbol P; ) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself. Dynamic viscosity has dimension \mathrm. 1~\text = 0.1~\text^ \text \text^ = 1~\text^ \text \text^ = 1~\text \text \text^. The analogous unit in the International System of Units is the pascal-second (Pa⋅s): 1~\text \text = 1~\text \text \text^ = 1~\text^ \text \text^ = 10~\text. The poise is often used with the metric prefix ''centi-'' because the viscosity of water at 20 °C ( standard conditions for temperature and pressure) is almost exactly 1 centipoise. A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10−3 Pa⋅s = 1 mPa⋅s). The CGS symbol for the centipoise is cP. The abbreviations cps, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Constant velocity vs acceleration To have a ''constant velocity'', an object must have a constant speed in a constant direction. Constant direction cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]