HOME
*



picture info

Johnson Counter
A ring counter is a type of counter composed of flip-flops connected into a shift register, with the output of the last flip-flop fed to the input of the first, making a "circular" or "ring" structure. There are two types of ring counters: * A straight ring counter, also known as a one-hot counter, connects the output of the last shift register to the first shift register input and circulates a single one (or zero) bit around the ring. * A twisted ring counter, also called switch-tail ring counter, walking ring counter, Johnson counter, or Möbius counter, connects the complement of the output of the last shift register to the input of the first register and circulates a stream of ones followed by zeros around the ring. Four-bit ring-counter sequences Properties Ring counters are often used in hardware design (e.g. ASIC and FPGA design) to create finite-state machines. A binary counter would require an adder circuit which is substantially more complex than a ring count ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flip-flop (electronics)
In electronics, a flip-flop or latch is a circuit that has two stable states and can be used to store state information – a bistable multivibrator. The circuit can be made to change state by signals applied to one or more control inputs and will have one or two outputs. It is the basic storage element in sequential logic. Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems. Flip-flops and latches are used as data storage elements. A flip-flop is a device which stores a single ''bit'' (binary digit) of data; one of its two states represents a "one" and the other represents a "zero". Such data storage can be used for storage of ''state'', and such a circuit is described as sequential logic in electronics. When used in a finite-state machine, the output and next state depend not only on its current input, but also on its current state (and hence, previous inputs). It can also b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wilcox P
Wilcox may refer to: Places ;Canada *Wilcox, Saskatchewan ;United States *Wilcox, Florida, an unincorporated community in Gilchrist County, Florida *Wilcox, Missouri *Wilcox, Nebraska *Wilcox, Pennsylvania *Wilcox, Washington * Wilcox, Wisconsin *Wilcox County, Alabama *Wilcox County, Georgia *Wilcox Township, Michigan *Wilcox, Burleson County, Texas * Wilcox, Somervell County, Texas *Wilcox, Wyoming People *Wilcox (surname) Other *Wilcox Formation, a Paleogene age geologic formation in the Gulf of Mexico * ''Wilcox'' (film), a 2019 Canadian drama film *Wilcox, Crittenden Mill, a property in Middletown, Connecticut * Adrian C. Wilcox High School, Santa Clara, California, USA *Babcock & Wilcox, American manufacturer of power generation equipment *George Wilcox & Co, a South Australian hide and wool business, which became Wilcox Mofflin Ltd. *Wilcox Group, Canadian crisis management company *Wilcox Health, Hospital and medical group in Hawaii *Wilcox rebellions, rebellions in the Haw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modem
A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by Modulation#Digital modulation methods, modulating one or more carrier wave signals to encode digital information, while the receiver Demodulation, demodulates the signal to recreate the original digital information. The goal is to produce a Signal (electronics), signal that can be transmitted easily and decoded reliably. Modems can be used with almost any means of transmitting analog signals, from light-emitting diodes to radio. Early modems were devices that used audible sounds suitable for transmission over traditional telephone systems and leased lines. These generally operated at 110 or 300 bits per second (bit/s), and the connection between devices was normally manual, using an attached telephone handset. By the 1970s, higher speeds of 1,200 and 2,400  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual-tone Multi-frequency Signaling
Dual-tone multi-frequency signaling (DTMF) is a telecommunication signaling system using the voice-frequency band over telephone lines between telephone equipment and other communications devices and switching centers. DTMF was first developed in the Bell System in the United States, and became known under the trademark Touch-Tone for use in push-button telephones supplied to telephone customers, starting in 1963. DTMF is standardized as ITU-T Recommendation Q.23. It is also known in the UK as ''MF4''. The Touch-Tone system using a telephone keypad gradually replaced the use of rotary dial and has become the industry standard for landline and mobile service. Other multi-frequency systems are used for internal signaling within the telephone network. Multifrequency signaling Before the development of DTMF, telephone numbers were dialed by users with a loop-disconnect (LD) signaling, more commonly known as pulse dialing (dial pulse, DP) in the United States. It functions by int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous-phase Frequency-shift Keying
Continuous phase modulation (CPM) is a method for modulation of data commonly used in wireless modems. In contrast to other coherent digital phase modulation techniques where the carrier phase abruptly resets to zero at the start of every symbol (e.g. M- PSK), with CPM the carrier phase is modulated in a continuous manner. For instance, with QPSK the carrier instantaneously jumps from a sine to a cosine (i.e. a 90 degree phase shift) whenever one of the two message bits of the current symbol differs from the two message bits of the previous symbol. This discontinuity requires a relatively large percentage of the power to occur outside of the intended band (e.g., high fractional out-of-band power), leading to poor spectral efficiency. Furthermore, CPM is typically implemented as a constant-envelope waveform, i.e., the transmitted carrier power is constant. Therefore, CPM is attractive because the phase continuity yields high spectral efficiency, and the constant envelope yields exce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerically-controlled Oscillator
A numerically-controlled oscillator (NCO) is a digital signal generator which creates a synchronous (i.e. clocked), discrete-time, discrete-valued representation of a waveform, usually sinusoidal. NCOs are often used in conjunction with a digital-to-analog converter (DAC) at the output to create a direct digital synthesizer (DDS). Numerically-controlled oscillators offer several advantages over other types of oscillators in terms of agility, accuracy, stability and reliability. NCOs are used in many communications systems including digital up/down converters used in 3G wireless and software radio systems, digital phase-locked loops, radar systems, drivers for optical or acoustic transmissions, and multilevel FSK/ PSK modulators/demodulators. Operation An NCO generally consists of two parts: *A ''phase accumulator'' (PA), which adds to the value held at its output a frequency control value at each clock sample. *A ''phase-to-amplitude converter'' (PAC), which uses the phase accum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prescaler
A prescaler is an electronic counting circuit used to reduce a high frequency electrical signal to a lower frequency by integer division. The prescaler takes the basic timer clock frequency (which may be the CPU clock frequency or may be some higher or lower frequency) and divides it by some value before feeding it to the timer, according to how the prescaler register(s) are configured. The prescaler values, referred to as prescales, that may be configured might be limited to a few fixed values (powers of 2), or they may be any integer value from 1 to 2^P, where P is the number of prescaler bits. The purpose of the prescaler is to allow the timer to be clocked at the rate a user desires. For shorter (8 and 16-bit) timers, there will often be a tradeoff between resolution (high resolution requires a high clock rate) and range (high clock rates cause the timer to overflow more quickly). For example, one cannot (without some tricks) achieve 1 µs resolution and a 1 sec maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrature Encoder
An incremental encoder is a linear or rotary electromechanical device that has two output signals, ''A'' and ''B'', which issue pulses when the device is moved. Together, the ''A'' and ''B'' signals indicate both the occurrence of and direction of movement. Many incremental encoders have an additional output signal, typically designated ''index'' or ''Z'', which indicates the encoder is located at a particular reference position. Also, some encoders provide a status output (typically designated ''alarm'') that indicates internal fault conditions such as a bearing failure or sensor malfunction. Unlike an absolute encoder, an incremental encoder does not indicate absolute position; it only reports changes in position and, for each reported position change, the direction of movement. Consequently, to determine absolute position at any particular moment, it is necessary to send the encoder signals to an '' incremental encoder interface'', which in turn will "track" and report the enc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Mice
A computer mouse (plural mice, sometimes mouses) is a hand-held pointing device that detects two-dimensional space, two-dimensional motion relative to a surface. This motion is typically translated into the motion of a pointer (user interface), pointer on a computer monitor, display, which allows a smooth control of the graphical user interface of a computer. The first public demonstration of a mouse controlling a computer system was in 1968. Mice originally used two separate wheels to track movement across a surface: one in the X-dimension and one in the Y. Later, the standard design shifted to utilize a ball rolling on a surface to detect motion. Most modern mice use optical sensors that have no moving parts. Though originally all mice were connected to a computer by a cable, many modern mice are cordless, relying on short-range radio communication with the connected system. In addition to moving a cursor (user interface), cursor, computer mice have one or more mouse button ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bi-quinary Coded Decimal
Bi-quinary coded decimal is a numeral encoding scheme used in many abacuses and in some early computers, including the Colossus. The term ''bi-quinary'' indicates that the code comprises both a two-state (''bi'') and a five-state (''quin''ary) component. The encoding resembles that used by many abacuses, with four beads indicating either 0 through 4 or 5 through 9 and another bead indicating which of those ranges. Several human languages, most notably Fula and Wolof also use biquinary systems. For example, the Fula word for 6, ''jowi e go'o'', literally means ''five lusone''. Roman numerals use a symbolic, rather than positional, bi-quinary base, even though Latin is completely decimal. Examples Several different representations of bi-quinary coded decimal have been used by different machines. The two-state component is encoded as one or two bits, and the five-state component is encoded using three to five bits. Some examples are: * Roman and Chinese abacuses * Stibitz rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Colossus Computer
Colossus was a set of computers developed by British codebreakers in the years 1943–1945 to help in the cryptanalysis of the Lorenz cipher. Colossus used thermionic valves (vacuum tubes) to perform Boolean and counting operations. Colossus is thus regarded as the world's first programmable, electronic, digital computer, although it was programmed by switches and plugs and not by a stored program. Colossus was designed by General Post Office (GPO) research telephone engineer Tommy Flowers to solve a problem posed by mathematician Max Newman at the Government Code and Cypher School (GC&CS) at Bletchley Park. Alan Turing's use of probability in cryptanalysis (see Banburismus) contributed to its design. It has sometimes been erroneously stated that Turing designed Colossus to aid the cryptanalysis of the Enigma. (Turing's machine that helped decode Enigma was the electromechanical Bombe, not Colossus.) The prototype, Colossus Mark 1, was shown to be working in December 1943 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heath Robinson (codebreaking Machine)
Heath Robinson was a machine used by British codebreakers at the Government Code and Cypher School (GC&CS) at Bletchley Park during World War II in cryptanalysis of the Lorenz cipher. This achieved the decryption of messages in the German teleprinter cipher produced by the Lorenz SZ40/42 in-line cipher machine. Both the cipher and the machines were called "Tunny" by the codebreakers, who named different German teleprinter ciphers after fish. It was mainly an electro-mechanical machine, containing no more than a couple of dozen valves (vacuum tubes), and was the predecessor to the electronic Colossus computer. It was dubbed "Heath Robinson" by the Wrens who operated it, after cartoonist William Heath Robinson, who drew immensely complicated mechanical devices for simple tasks, similar to (and somewhat predating) Rube Goldberg in the U.S. The functional specification of the machine was produced by Max Newman. The main engineering design was the work of Frank Morrell at the Post Of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]