HOME
*





Jacobi's Four-square Theorem
Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer ''n'' can be represented as the sum of four squares. History The theorem was proved in 1834 by Carl Gustav Jakob Jacobi. Theorem Two representations are considered different if their terms are in different order or if the integer being squared (not just the square) is different; to illustrate, these are three of the eight different ways to represent 1: : \begin & 1^2 + 0^2 + 0^2 + 0^2 \\ & 0^2 + 1^2 + 0^2 + 0^2 \\ & (-1)^2 + 0^2 + 0^2 + 0^2. \end The number of ways to represent n as the sum of four squares is eight times the sum of the divisors of ''n'' if ''n'' is odd and 24 times the sum of the odd divisors of ''n'' if ''n'' is even (see divisor function), i.e. : r_4(n)=\begin8\sum\limits_m&\textn\text\\2pt24\sum\limits_m&\textn\text. \end Equivalently, it is eight times the sum of all its divisors which are not divisible by 4, i.e. :r_4(n)=8\sum_m. We may also write this as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi's Theorem (other)
Jacobi's theorem can refer to: *Maximum power theorem, in electrical engineering *The result that the determinant of skew-symmetric matrices with odd size vanishes, see skew-symmetric matrix *Jacobi's four-square theorem Jacobi's four-square theorem gives a formula for the number of ways that a given positive integer ''n'' can be represented as the sum of four squares. History The theorem was proved in 1834 by Carl Gustav Jakob Jacobi. Theorem Two representatio ..., in number theory * Jacobi's theorem (geometry), on concurrent lines associated with any triangle * Jacobi's theorem on the normal indicatrix, in differential geometry * Jacobi's theorem on conjugate points, in differential geometry {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carl Gustav Jakob Jacobi
Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasionally written as Carolus Gustavus Iacobus Iacobi in his Latin books, and his first name is sometimes given as Karl. Jacobi was the first Jewish mathematician to be appointed professor at a German university. Biography Jacobi was born of Ashkenazi Jewish parentage in Potsdam on 10 December 1804. He was the second of four children of banker Simon Jacobi. His elder brother Moritz von Jacobi would also become known later as an engineer and physicist. He was initially home schooled by his uncle Lehman, who instructed him in the classical languages and elements of mathematics. In 1816, the twelve-year-old Jacobi went to the Potsdam Gymnasium, where students were taught all the standard subjects: classical languages, history, philology, mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Triple Product
In mathematics, the Jacobi triple product is the mathematical identity: :\prod_^\infty \left( 1 - x^\right) \left( 1 + x^ y^2\right) \left( 1 +\frac\right) = \sum_^\infty x^ y^, for complex numbers ''x'' and ''y'', with , ''x'', < 1 and ''y'' ≠ 0. It was introduced by in his work '' Fundamenta Nova Theoriae Functionum Ellipticarum''. The Jacobi triple product identity is the Macdonald identity for the affine root system of type ''A''1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra. Properties The basis of Jacobi's proof relies on Euler's pentagonal number theorem, which is itself a specific case of the Jacobi Triple Product Identity. Let x=q\sqrt q and y^2=-\sqrt. Then we have :\phi(q) = \prod_^\infty \left(1-q^m \right) = \sum_^\infty (-1)^n q^. The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product as follows: Let x=e^ and y=e^. Then the Jacobi theta function : \vartheta(z; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Series
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices are of inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modular Form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory. A modular function is a function that is invariant with respect to the modular group, but without the condition that be Holomorphic function, holomorphic in the upper half-plane (among other requirements). Instead, modular functions are Meromorphic function, meromorphic (that is, they are holomorphic on the complement of a set of isolated points, which are poles of the function). Modular form theory is a special case of the more general theory of automorphic form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein Series
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms. Eisenstein series for the modular group Let be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series of weight , where is an integer, by the following series: :G_(\tau) = \sum_ \frac. This series absolutely converges to a holomorphic function of in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at . It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its -invariance. Explicitly if and then :G_ \left( \frac \right) = (c\tau +d)^ G_(\tau) Relation to modular invariants The modular invariants and of an elliptic curve are given by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange's Four-square Theorem
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as the sum of four integer squares. That is, the squares form an additive basis of order four. p = a_0^2 + a_1^2 + a_2^2 + a_3^2 where the four numbers a_0, a_1, a_2, a_3 are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: \begin 3 & = 1^2+1^2+1^2+0^2 \\ pt31 & = 5^2+2^2+1^2+1^2 \\ pt310 & = 17^2+4^2+2^2+1^2 \\ pt& = 16^2 + 7^2 + 2^2 +1^2 \\ pt& = 15^2 + 9^2 + 2^2 +0^2 \\ pt& = 12^2 + 11^2 + 6^2 + 3^2. \end This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem. Historical development From examples given in the '' Arithmetica,'' it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Bachet (Claude Gaspard Bachet de Méziriac), who stated the theorem in the notes of his translation. Bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]