Eisenstein series, named after German mathematician
Gotthold Eisenstein
Ferdinand Gotthold Max Eisenstein (16 April 1823 – 11 October 1852) was a German mathematician. He specialized in number theory and analysis, and proved several results that eluded even Gauss. Like Galois and Abel before him, Eisenstein died ...
, are particular
modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ...
s with
infinite series
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, math ...
expansions that may be written down directly. Originally defined for the
modular group
In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional l ...
, Eisenstein series can be generalized in the theory of
automorphic forms.
Eisenstein series for the modular group
Let be a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
with strictly positive
imaginary part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
. Define the holomorphic Eisenstein series of weight , where is an integer, by the following series:
:
This series
absolutely converges to a holomorphic function of in the
upper half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0.
Complex plane
Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to ...
and its Fourier expansion given below shows that it extends to a holomorphic function at . It is a remarkable fact that the Eisenstein series is a
modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ...
. Indeed, the key property is its -invariance. Explicitly if and then
:
Relation to modular invariants
The
modular invariants and of an
elliptic curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
are given by the first two Eisenstein series:
:
The article on modular invariants provides expressions for these two functions in terms of
theta function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
s.
Recurrence relation
Any holomorphic modular form for the modular group can be written as a polynomial in and . Specifically, the higher order can be written in terms of and through a
recurrence relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
. Let , so for example, and . Then the satisfy the relation
:
for all . Here, is the
binomial coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
.
The occur in the series expansion for the
Weierstrass's elliptic functions
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by t ...
:
:
Fourier series
Define . (Some older books define to be the
nome , but is now standard in number theory.) Then the
Fourier series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
of the Eisenstein series is
:
where the coefficients are given by
:
Here, are the
Bernoulli number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, ...
s, is
Riemann's zeta function and is the
divisor sum function, the sum of the th powers of the divisors of . In particular, one has
:
The summation over can be resummed as a
Lambert series
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
:S(q)=\sum_^\infty a_n \frac .
It can be resumed formally by expanding the denominator:
:S(q)=\sum_^\infty a_n \sum_^\infty q^ = \sum_^\infty b_m ...
; that is, one has
:
for arbitrary
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
and . When working with the
-expansion of the Eisenstein series, this alternate notation is frequently introduced:
:
Identities involving Eisenstein series
As theta functions
Given , let
:
and define the
Jacobi theta functions
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
which normally uses the
nome ,
:
where and are alternative notations. Then we have the symmetric relations,
:
Basic algebra immediately implies
:
an expression related to the
modular discriminant
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the ...
,
:
The third symmetric relation, on the other hand, is a consequence of and .
Products of Eisenstein series
Eisenstein series form the most explicit examples of
modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ...
s for the full modular group . Since the space of modular forms of weight has dimension 1 for , different products of Eisenstein series having those weights have to be equal up to a scalar multiple. In fact, we obtain the identities:
:
Using the -expansions of the Eisenstein series given above, they may be restated as identities involving the sums of powers of divisors:
:
hence
:
and similarly for the others. The
theta function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
of an eight-dimensional even unimodular lattice is a modular form of weight 4 for the full modular group, which gives the following identities:
:
for the number of vectors of the squared length in the
root lattice of the type .
Similar techniques involving holomorphic Eisenstein series twisted by a
Dirichlet character
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi:\mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b:
:1) \chi ...
produce formulas for the number of representations of a positive integer ' as a sum of two, four, or eight squares in terms of the divisors of .
Using the above recurrence relation, all higher can be expressed as polynomials in and . For example:
:
Many relationships between products of Eisenstein series can be written in an elegant way using
Hankel determinants, e.g. Garvan's identity
:
where
:
is the
modular discriminant
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the ...
.
Ramanujan identities
Srinivasa Ramanujan
Srinivasa Ramanujan (; born Srinivasa Ramanujan Aiyangar, ; 22 December 188726 April 1920) was an Indian mathematician. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis ...
gave several interesting identities between the first few Eisenstein series involving differentiation. Let
:
then
:
These identities, like the identities between the series, yield arithmetical
convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions ( and ) that produces a third function (f*g) that expresses how the shape of one is ...
identities involving the
sum-of-divisor function. Following Ramanujan, to put these identities in the simplest form it is necessary to extend the domain of to include zero, by setting
:
Then, for example
:
Other identities of this type, but not directly related to the preceding relations between , and functions, have been proved by Ramanujan and
Giuseppe Melfi
Giuseppe Melfi (June 11, 1967) is an Italo-Swiss mathematician who works on practical numbers and modular forms.
Career
He gained his PhD in mathematics in 1997 at the University of Pisa. After some time spent at the University of Lausanne durin ...
,
as for example
:
Generalizations
Automorphic forms generalize the idea of modular forms for general
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
s; and Eisenstein series generalize in a similar fashion.
Defining to be the
ring of integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often deno ...
of a
totally real algebraic number field , one then defines the
Hilbert–Blumenthal modular group as . One can then associate an Eisenstein series to every
cusp
A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth.
Cusp or CUSP may also refer to:
Mathematics
* Cusp (singularity), a singular point of a curve
* Cusp catastrophe, a branch of bifurc ...
of the Hilbert–Blumenthal modular group.
References
Further reading
* Translated into English as
*
*
*
* {{cite book, authorlink=Jean-Pierre Serre, last=Serre, first=Jean-Pierre, title=A Course in Arithmetic, url=https://archive.org/details/courseinarithmet00serr, url-access=registration, edition=transl., series=Graduate Texts in Mathematics 7, publisher=
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing.
Originally founded in 1842 in ...
, location=New York & Heidelberg, date=1973, isbn=9780387900407
Mathematical series
Modular forms
Analytic number theory
Fractals