Iteration
   HOME





Iteration
Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. In mathematics and computer science, iteration (along with the related technique of recursion) is a standard element of algorithms. Mathematics In mathematics, iteration may refer to the process of iterated function, iterating a function, i.e. applying a function repeatedly, using the output from one iteration as the input to the next. Iteration of apparently simple functions can produce complex behaviors and difficult problems – for examples, see the Collatz conjecture and juggler sequences. Another use of iteration in mathematics is in iterative methods which are used to produce approximate numerical solutions to certain mathematical problems. Newton's method is an example of an iterative method. Manual calculation of a number's sq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iterators
In computer programming, an iterator is an object (computing), object that progressively provides access to each item of a Collection (abstract data type), collection, in order. A collection may provide multiple iterators via its Interface (object-oriented programming), interface that provide items in different orders, such as forwards and backwards. An iterator is often implemented in terms of the structure underlying a collection implementation and is often tightly Coupling (computer programming), coupled to the collection to enable the operational semantics of the iterator. An iterator is behaviorally similar to a cursor (databases), database cursor. Iterators date to the CLU (programming language), CLU programming language in 1974. Pattern An iterator provides access to an element of a collection (''element access'') and can change its internal state to provide access to the next element (''element traversal''). It also provides for creation and initialization to a first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton's Method
In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a real-valued function , its derivative , and an initial guess for a root of . If satisfies certain assumptions and the initial guess is close, then x_ = x_0 - \frac is a better approximation of the root than . Geometrically, is the x-intercept of the tangent of the graph of at : that is, the improved guess, , is the unique root of the linear approximation of at the initial guess, . The process is repeated as x_ = x_n - \frac until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's methods, and was succeeded by Halley's method. The method can also be extended t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brute-force Search
In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of Iteration#Computing, systematically checking all possible candidates for whether or not each candidate satisfies the problem's statement. A brute-force algorithm that finds the divisors of a natural number ''n'' would enumerate all integers from 1 to n, and check whether each of them divides ''n'' without remainder. A brute-force approach for the eight queens puzzle would examine all possible arrangements of 8 pieces on the 64-square chessboard and for each arrangement, check whether each (queen) piece can attack any other. While a brute-force search is simple to implement and will always find a solution if it exists, implementation costs are proportional to the number of candidate solutionswhich in many practical problems tends to grow very quickly as the size of the problem increases (#Combinatorial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iterated Function
In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated. For example, on the image on the right: : Iterated functions are studied in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of , where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X and f^ ~ \stackrel ~ f \circ f^, where is the identity function on and denotes function composition. This notation has been traced to and John Frederick William Herschel in 1813. Herschel credited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collatz Conjecture
The Collatz conjecture is one of the most famous List of unsolved problems in mathematics, unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns integer sequence, sequences of integers in which each term is obtained from the previous term as follows: if a term is Parity (mathematics), even, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to , but no general proof has been found. It is named after the mathematician Lothar Collatz, who introduced the idea in 1937, two years after receiving his doctorate. The sequence of numbers involved is sometimes referred to as the hailstone sequence, hailstone numbers or hailstone numerals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Flow
In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an ''imperative programming'' language from a ''declarative programming'' language. Within an imperative programming language, a ''control flow statement'' is a statement that results in a choice being made as to which of two or more paths to follow. For non-strict functional languages, functions and language constructs exist to achieve the same result, but they are usually not termed control flow statements. A set of statements is in turn generally structured as a block, which in addition to grouping, also defines a lexical scope. Interrupts and signals are low-level mechanisms that can alter the flow of control in a way similar to a subroutine, but usually occur as a response to some external stimulus or event (that can occur asynchr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme (programming Language)
Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT Computer Science and Artificial Intelligence Laboratory (MIT CSAIL) and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms. It was also one of the first programming languages to support first-class continuations. It had a significant influence on the effort that led to the development of Common Lisp.Common LISP: The Language, 2nd Ed., Guy L. Steele Jr. Digital Press; 1981. . "Common Lisp is a new dialect of Lisp, a successor to MacLisp, influenced strongly by ZetaLisp and to some extent by Scheme and InterLisp." The Scheme language is standardized in the offic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Compositions Of Analytic Functions
In mathematics, infinite Function composition, compositions of analytic functions (ICAF) offer alternative formulations of Generalized continued fraction, analytic continued fractions, series (mathematics), series, product (mathematics), products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence (mathematics), convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point (mathematics), fixed point equations involving infinite expansions. Complex dynamics offers another venue for iterated function system, iteration of systems of functions rather than a single function. For infinite compositions of a ''single function'' see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system. Although the title of this article specifies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Programming Languages
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner. Functional programming is sometimes treated as synonymous with purely functional programming, a subset of functional programming that treats all functions as deterministic mathematical functions, or pure functions. When a pure function is called with some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Iteratees
In functional programming, an iteratee is a composable abstraction for incrementally processing sequentially presented chunks of input data in a purely functional fashion. With iteratees, it is possible to lazily transform how a resource will emit data, for example, by converting each chunk of the input to uppercase as they are retrieved or by limiting the data to only the five first chunks without loading the whole input data into memory. Iteratees are also responsible for opening and closing resources, providing predictable resource management. On each step, an iteratee is presented with one of three possible types of values: the next chunk of data, a value to indicate no data is available, or a value to indicate the iteration process has finished. It may return one of three possible types of values, to indicate to the caller what should be done next: one that means "stop" (and contains the final return value), one that means "continue" (and specifies how to continue), and one th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithms
In mathematics and computer science, an algorithm () is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an effective method, an algorithm can be expressed within a finite amount of space and time"Any classic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]