Irving Ezra Segal
   HOME
*





Irving Ezra Segal
Irving Ezra Segal (1918–1998) was an American mathematician known for work on theoretical quantum mechanics. He shares credit for what is often referred to as the Segal–Shale–Weil representation. Early in his career Segal became known for his developments in quantum field theory and in functional and harmonic analysis, in particular his innovation of the algebraic axioms known as C*-algebra. Biography Irving Ezra Segal was born in the Bronx on September 13, 1918, to Jewish parents. He attended school in Trenton. In 1934 he was admitted to Princeton University, at the age of 16. He was elected to Phi Beta Kappa, completed his undergraduate studies in just three years time, graduated with highest honors with a bachelor's degree in 1937, and was awarded the George B. Covington Prize in Mathematics. He was then admitted to Yale, and in another three years time had completed his doctorate, receiving his Doctor of Philosophy degree in 1940. Segal taught at Harvard University, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nice
Nice ( , ; Niçard: , classical norm, or , nonstandard, ; it, Nizza ; lij, Nissa; grc, Νίκαια; la, Nicaea) is the prefecture of the Alpes-Maritimes department in France. The Nice agglomeration extends far beyond the administrative city limits, with a population of nearly 1 millionDemographia: World Urban Areas
, Demographia.com, April 2016
on an area of . Located on the , the southeastern coast of France on the , at the foot of the

Bertram Kostant
Bertram Kostant (May 24, 1928 – February 2, 2017) was an American mathematician who worked in representation theory, differential geometry, and mathematical physics. Early life and education Kostant grew up in New York City, where he graduated from Stuyvesant High School in 1945. He went on to obtain an undergraduate degree in mathematics from Purdue University in 1950. He earned his Ph.D. from the University of Chicago in 1954, under the direction of Irving Segal, where he wrote a dissertation on representations of Lie groups. Career in mathematics After time at the Institute for Advanced Study, Princeton University, and the University of California, Berkeley, he joined the faculty at the Massachusetts Institute of Technology, where he remained until his retirement in 1993. Kostant's work has involved representation theory, Lie groups, Lie algebras, homogeneous spaces, differential geometry and mathematical physics, particularly symplectic geometry. He has given several ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One of the earliest known mathematicians were Thales of Miletus (c. 624–c.546 BC); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. The number of known mathematicians grew when Pythagoras of Samos (c. 582–c. 507 BC) established the Pythagorean School, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was Hypati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscillator Representation
In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself. The contraction operators, determined only up to a sign, have kernels that are Gaussian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gelfand–Naimark–Segal Construction
In functional analysis, a discipline within mathematics, given a C*-algebra ''A'', the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of ''A'' and certain linear functionals on ''A'' (called ''states''). The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal. States and representations A *-representation of a C*-algebra ''A'' on a Hilbert space ''H'' is a mapping π from ''A'' into the algebra of bounded operators on ''H'' such that * π is a ring homomorphism which carries involution on ''A'' into involution on operators * π is nondegenerate, that is the space of vectors π(''x'') ξ is dense as ''x'' ranges through ''A'' and ξ ranges through ''H''. Note that if ''A'' has an identity, nondegeneracy means exactly π is unit-preserving, i.e. π maps the identity of ''A'' to the identity operator on ''H''. A state on a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symplectic Spinor Bundle
In differential geometry, given a metaplectic structure \pi_\colon\to M\, on a 2n-dimensional symplectic manifold (M, \omega),\, the symplectic spinor bundle is the Hilbert space bundle \pi_\colon\to M\, associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle; this is the symplectic spinor construction due to Bertram Kostant. A section of the symplectic spinor bundle \, is called a symplectic spinor field. Formal definition Let (,F_) be a metaplectic structure on a symplectic manifold (M, \omega),\, that is, an equivariant lift of the symplectic frame bundle \pi_\colon\to M\, with respect to the double covering \rho\colon (n,)\to (n,).\, The symplectic spinor bundle \, is defined to be the Hilbert space bundle : =\times_L^2(^n)\, associated to the metaplectic structure via the metaplectic representation \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Segal–Bargmann Space
In mathematics, the Segal–Bargmann space (for Irving Segal and Valentine Bargmann), also known as the Bargmann space or Bargmann–Fock space, is the space of holomorphic functions ''F'' in ''n'' complex variables satisfying the square-integrability condition: :\, F\, ^2 := \pi^ \int_ , F(z), ^2 \exp(-, z, ^2)\,dz < \infty, where here ''dz'' denotes the 2''n''-dimensional Lebesgue measure on \Complex^n. It is a with respect to the associated inner product: : \langle F\mid G\rangle = \pi^ \int_ \overlineG(z)\exp(-, z, ^2)\,dz. The space was introduced in the mathematical physics literature separately by Bargmann and Segal in the early 1960s; see and . Basic information about the material in this section may be found in and . Segal worked from the beginning in the infinite-dimensional setting; see and Sect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Walter Alexander Strauss
Walter Alexander Strauss (born 1937) is American applied mathematician, specializing in partial differential equations and nonlinear waves. His Research interests are Partial Differential Equations, Mathematical Physics, Stability Theory, Solitary Waves, Kinetic Theory of Plasmas, Scattering Theory, Water Waves, Dispersive Waves. Education and career Strauss graduated in 1958 with an A.B. in mathematics from Columbia University and in 1959 with an M.S. from the University of Chicago. He received his Ph.D. from the Massachusetts Institute of Technology in 1962 with thesis ''Scattering for hyperbolic equations'' under the supervision of Irving Segal. Strauss was a postdoc for the academic year 1962–1963 at the ''Université de Paris''. He was a visiting assistant professor from 1963 to 1966 at Stanford University. At Brown University he was an associate professor from 1966 to 1971 and a full professor from 1971 to the present. Strauss has done research on "scattering theory in el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isadore Singer
Isadore Manuel Singer (May 3, 1924 – February 11, 2021) was an American mathematician. He was an Emeritus Institute Professor in the Department of Mathematics at the Massachusetts Institute of Technology and a Professor Emeritus of Mathematics at the University of California, Berkeley. Singer is noted for his work with Michael Atiyah, proving the Atiyah–Singer index theorem in 1962, which paved the way for new interactions between pure mathematics and theoretical physics. In early 1980s, while a professor at Berkeley, Singer co-founded the Mathematical Sciences Research Institute (MSRI) with Shiing-Shen Chern and Calvin Moore. Biography Early life and education Singer was born on May 3, 1924, in Detroit, Michigan, to Polish Jewish immigrants. His father Simon was employed as a printer and only spoke Yiddish, and his mother, Freda (Rosemaity), worked as a seamstress. Singer learned English swiftly and subsequently taught it to the rest of his family. Isadore was born with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




David Shale
David Winston Howard Shale (22 March 1932, New Zealand – 7 January 2016) was a New Zealand-American mathematician, specializing in the mathematical foundations of quantum physics. He is known as one of the namesakes of the Segal–Shale-Weil representation. After secondary and undergraduate education in New Zealand, Shale became a graduate student in mathematics at the University of Chicago and received his Ph.D. there in 1960. His thesis ''On certain groups of operators on Hilbert space'' was written under the supervision of Irving Segal. Shale became an assistant professor at the University of California, Berkeley and then became in 1964 a professor at the University of Pennsylvania The University of Pennsylvania (also known as Penn or UPenn) is a private research university in Philadelphia. It is the fourth-oldest institution of higher education in the United States and is ranked among the highest-regarded universitie ..., where he continued teaching until his retire ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]