Initial And Final State Radiation
   HOME
*



picture info

Initial And Final State Radiation
In quantum field theory, initial and final state radiation refers to certain kinds of radiative emissions that are not due to particle annihilation.Reducing the Uncertainty in the Detection Efficiency for Π0 Particles at BABAR
Kim Alwyn. Accessed 08 March 2013. It is important in experimental and theoretical studies of interactions at particle colliders.


Explanation of initial and final states

Particle accelerators and colliders produce collisions (interactions) of particles (like the or the ). In th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bremsstrahlung
''Bremsstrahlung'' (), from "to brake" and "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation (i.e., photons), thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. ''Bremsstrahlung'' has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases. Broadly speaking, ''bremsstrahlung'' or braking radiation is any radiation produced due to the deceleration (negative acceleration) of a charged particle, which includes synchrotron radiation (i.e., photon emission by a relativistic particle), cyclotron radiation (i.e. photon emission by a non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wick's Theorem
Wick's theorem is a method of reducing high-order derivatives to a combinatorics problem. It is named after Italian physicist Gian-Carlo Wick. It is used extensively in quantum field theory to reduce arbitrary products of creation and annihilation operators to sums of products of pairs of these operators. This allows for the use of Green's function methods, and consequently the use of Feynman diagrams in the field under study. A more general idea in probability theory is Isserlis' theorem. In perturbative quantum field theory, Wick's theorem is used to quickly rewrite each time ordered summand in the Dyson series as a sum of normal ordered terms. In the limit of asymptotically free ingoing and outgoing states, these terms correspond to Feynman diagrams. Definition of contraction For two operators \hat and \hat we define their contraction to be :\hat^\bullet\, \hat^\bullet \equiv \hat\,\hat\, - \mathopen \hat\,\hat \mathclose where \mathopen \hat \mathclose denotes the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Quantization
In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible. Historically, this was not quite Werner Heisenberg's route to obtaining quantum mechanics, but Paul Dirac introduced it in his 1926 doctoral thesis, the "method of classical analogy" for quantization, and detailed it in his classic text. The word ''canonical'' arises from the Hamiltonian approach to classical mechanics, in which a system's dynamics is generated via canonical Poisson brackets, a structure which is ''only partially preserved'' in canonical quantization. This method was further used in the context of quantum field theory by Paul Dirac, in his construction of quantum electrodynamics. In the field theory context, it is also called the second quantization of fields, in contrast to the semi-classical first quantization of single particles. History When ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transition Amplitude
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density. Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first proposed by Max Born, in 1926. Interpretation of values of a wave function as the probability amplitude is a pillar of the Copenhagen interpretation of quantum mechanics. In fact, the properties of the space of wave functions were being used to make physical predictions (such as emissions from atoms being at certain discrete energies) before any physical interpretation of a particular function was offered. Born was awarded half of the 1954 Nobel Prize in Physics for this understanding, and the probability thus calculated is sometimes called the "Born probability". These probabilistic concepts, namely the probability density and quantum measurement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perturbative
In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system (e.g. its energy levels and eigenstates) can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system. Approximate Hamiltonians Perturbation theory is an important tool for d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feynman Diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Born Approximation
Generally in scattering theory and in particular in quantum mechanics, the Born approximation consists of taking the incident field in place of the total field as the driving field at each point in the scatterer. The Born approximation is named after Max Born who proposed this approximation in early days of quantum theory development. It is the perturbation method applied to scattering by an extended body. It is accurate if the scattered field is small compared to the incident field on the scatterer. For example, the scattering of radio waves by a light styrofoam column can be approximated by assuming that each part of the plastic is polarized by the same electric field that would be present at that point without the column, and then calculating the scattering as a radiation integral over that polarization distribution. Born approximation to the Lippmann–Schwinger equation The Lippmann–Schwinger equation for the scattering state \vert\rangle with a momentum p and out-going ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Section (physics)
In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation (e.g. a particle beam, sound wave, light, or an X-ray) intersects a localized phenomenon (e.g. a particle or density fluctuation). For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted ( sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process. In classical physics, this probability often converges to a deterministic proportion of excitation energy involved in the process, so that, for example, with light scattering off of a particle, the cross section specifies the amount of optical power scattere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automatic Calculation Of Particle Interaction Or Decay
The automatic calculation of particle interaction or decay is part of the computational particle physics branch. It refers to computing tools that help calculating the complex particle interactions as studied in high-energy physics, astroparticle physics and cosmology. The goal of the automation is to handle the full sequence of calculations in an automatic (programmed) way: from the Lagrangian expression describing the physics model up to the cross-sections values and to the event generator software. Overview Particle accelerators or colliders produce collisions (interactions) of particles (like the electron or the proton). The colliding particles form the ''Initial State''. In the collision, particles can be annihilated or/and exchanged producing possibly different sets of particles, the ''Final States''. The Initial and Final States of the interaction relate through the so-called scattering matrix (S-matrix). For example, at LEP, , or are processes where the ''initial stat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beamstrahlung
Beamstrahlung (from beam + bremsstrahlung ) is the radiation from one beam of charged particles in storage rings, linear or circular colliders, namely the synchrotron radiation emitted due to the electromagnetic field of the opposing beam. "Beam Blow Up due to Beamstrahlung in Circular e+e − Colliders"
as of 8 November 201.9.

as of 30 December 2012.
Coined by J. Rees in 1978."Limitations on Performance of e+ e- Storage Rings and Linear Coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wlog
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]