IBM Z15 (microprocessor)
   HOME
*





IBM Z15 (microprocessor)
The z15 is a microprocessor made by IBM for their z15 mainframe computers, announced on September 12, 2019. Description The Processor Unit chip (PU chip) has 12 cores. The z15 cores support two-way simultaneous multithreading. The cores implement the CISC z/Architecture with a superscalar, out-of-order pipeline. New in z15 is an on-chip Nest Accelerator Unit, shared by all cores, to accelerate compression. The cache (e.g. level 3) is doubled from the previous generation z14, while the "L4 Cache increased from 672MB to 960MB, or +43%" with the new add-on chip System Controller (SC) SCM. Both it and all levels of cache in the main processor from level 1 use eDRAM Embedded DRAM (eDRAM) is dynamic random-access memory (DRAM) integrated on the same die or multi-chip module (MCM) of an application-specific integrated circuit (ASIC) or microprocessor. eDRAM's cost-per-bit is higher when compared to equivalen ..., instead of the traditionally used SRAM. "A five-CPC drawer syst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IBM Z14 (microprocessor)
The z14 is a microprocessor made by IBM for their z14 mainframe computers, announced on July 17, 2017. Manufactured at GlobalFoundries' East Fishkill, New York fabrication plant. IBM stated that it is the world's fastest microprocessor by clock rate at 5.2 GHz, with a 10% increased performance per core and 30% for the whole chip compared to its predecessor the z13. Description The Processor Unit chip (PU chip) has an area of 696 mm2 (25.3 × 27.5 mm) and consists of 6.1 billion transistors. It is fabricated using GlobalFoundries' 14 nm FinFET silicon on insulator fabrication process, using 17 layers of metal and supporting speeds of 5.2 GHz, which is higher than its predecessor, the z13. The PU chip has 10 cores but can have 7–10 cores (or "processor units" in IBM's parlance) enabled depending on configuration. The z14 cores support two-way simultaneous multithreading for more applications than previously available. The PU chip is packaged in a singl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IBM Telum (microprocessor)
The Telum is a microprocessor made by IBM for their IBM Z mainframe computers, announced at the Hot Chips 2021 conference on August 23, 2021. Telum is IBM's first processor that contains on-chip acceleration for AI inferencing while a transaction is taking place. The first Telum-based system was the IBM z16, introduced in April 2022. Description The chip contains 8 processor cores with a deep superscalar out-of-order pipeline, running with more than 5 GHz clock frequency, optimized for the demands of heterogenous enterprise class workloads. The completely redesigned cache and chip-interconnection infrastructure provides 32 MB cache per core, and can scale to 32 Telum chips. The dual-chip module design contains 22 billion transistors and 19 miles of wire on 17 metal layers. See also * z/Architecture * IBM System z * Mainframe computer A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical appl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Z/Architecture
z/Architecture, initially and briefly called ESA Modal Extensions (ESAME), is IBM's 64-bit complex instruction set computer (CISC) instruction set architecture, implemented by its mainframe computers. IBM introduced its first z/Architecture-based system, the z900, in late 2000. Later z/Architecture systems include the IBM z800, z990, z890, System z9, System z10, zEnterprise 196, zEnterprise 114, zEC12, zBC12, z13, z14, z15 and z16. z/Architecture retains backward compatibility with previous 32-bit-data/31-bit-addressing architecture ESA/390 and its predecessors all the way back to the 32-bit-data/24-bit-addressing System/360. The IBM z13 is the last z Systems server to support running an operating system in ESA/390 architecture mode. However, all 24-bit and 31-bit problem-state application programs originally written to run on the ESA/390 architecture will be unaffected by this change. Each z/OS address space, called a 64-bit address space, is 16 exabytes in size. C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microprocessor
A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit. The integrated circuit is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results (also in binary form) as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system. The integration of a whole CPU onto a single or a few integrated circuits using Very-Large-Scale Integration (VLSI) greatly reduced the cost of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IBM Z
IBM Z is a family name used by IBM for all of its z/Architecture mainframe computers. In July 2017, with another generation of products, the official family was changed to IBM Z from IBM z Systems; the IBM Z family now includes the newest model, the IBM z16, as well as the z15, the z14, and the z13 (released under the IBM z Systems/IBM System z names), the IBM zEnterprise models (in common use the zEC12 and z196), the IBM System z10 models (in common use the z10 EC), the IBM System z9 models (in common use the z9EC) and ''IBM eServer zSeries'' models (in common use refers only to the z900 and z990 generations of mainframe). Architecture The ''zSeries,'' ''zEnterprise,'' ''System z'' and ''IBM Z'' families were named for their availability – ''z'' stands for zero downtime. The systems are built with spare components capable of hot failovers to ensure continuous operations. The IBM Z family maintains full backward compatibility. In effect, current systems are the direct, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mainframe Computer
A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise resource planning, and large-scale transaction processing. A mainframe computer is large but not as large as a supercomputer and has more processing power than some other classes of computers, such as minicomputers, servers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers. The term ''mainframe'' was derived from the large cabinet, called a ''main frame'', that housed the central processing unit and main memory of early computers. Later, the term ''mainframe'' was used to distinguish high-end commercial computers from less powerful machines. Design Modern mainframe design is characterized less b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simultaneous Multithreading
Simultaneous multithreading (SMT) is a technique for improving the overall efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution to better use the resources provided by modern processor architectures. Details The term ''multithreading'' is ambiguous, because not only can multiple threads be executed simultaneously on one CPU core, but also multiple tasks (with different page tables, different task state segments, different protection rings, different I/O permissions, etc.). Although running on the same core, they are completely separated from each other. Multithreading is similar in concept to preemptive multitasking but is implemented at the thread level of execution in modern superscalar processors. Simultaneous multithreading (SMT) is one of the two main implementations of multithreading, the other form being temporal multithreading (also known as super-threading). In temporal multithreading, only one thread of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Instruction Set Computer
A complex instruction set computer (CISC ) is a computer architecture in which single instructions can execute several low-level operations (such as a load from memory, an arithmetic operation, and a memory store) or are capable of multi-step operations or addressing modes within single instructions. The term was retroactively coined in contrast to reduced instruction set computer (RISC) and has therefore become something of an umbrella term for everything that is not RISC, where the typical differentiating characteristic is that most RISC designs use uniform instruction length for almost all instructions, and employ strictly separate load and store instructions. Examples of CISC architectures include complex mainframe computers to simplistic microcontrollers where memory load and store operations are not separated from arithmetic instructions. Specific instruction set architectures that have been retroactively labeled CISC are System/360 through z/Architecture, the PDP-11 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superscalar
A superscalar processor is a CPU that implements a form of parallelism called instruction-level parallelism within a single processor. In contrast to a scalar processor, which can execute at most one single instruction per clock cycle, a superscalar processor can execute more than one instruction during a clock cycle by simultaneously dispatching multiple instructions to different execution units on the processor. It therefore allows more throughput (the number of instructions that can be executed in a unit of time) than would otherwise be possible at a given clock rate. Each execution unit is not a separate processor (or a core if the processor is a multi-core processor), but an execution resource within a single CPU such as an arithmetic logic unit. In Flynn's taxonomy, a single-core superscalar processor is classified as an SISD processor (single instruction stream, single data stream), though a single-core superscalar processor that supports short vector operations could ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Out-of-order Execution
In computer engineering, out-of-order execution (or more formally dynamic execution) is a paradigm used in most high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently. History Out-of-order execution is a restricted form of data flow computation, which was a major research area in computer architecture in the 1970s and early 1980s. The first machine to use out-of-order execution was the CDC 6600 (1964), designed by James E. Thornton, which uses a scoreboard to avoid conflicts. It permits an instruction to execute if its source operand (read) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instruction Pipeline
In computer engineering, instruction pipelining or ILP is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions processed in parallel. Concept and motivation In a pipelined computer, instructions flow through the central processing unit (CPU) in stages. For example, it might have one stage for each step of the von Neumann cycle: Fetch the instruction, fetch the operands, do the instruction, write the results. A pipelined computer usually has "pipeline registers" after each stage. These store information from the instruction and calculations so that the logic gates of the next stage can do the next step. This arrangement lets the CPU complete an instruction on each clock cycle. It is common for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder. The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding; encoding done at the source of the data before it is stored or transmitted. Source coding should not be confused with channel coding, for error detection and correction or line coding, the means for mapping data onto a signal. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]