Iterative Refinement
Iterative refinement is an iterative method proposed by James H. Wilkinson to improve the accuracy of numerical solutions to systems of linear equations. When solving a linear system A \mathbf = \mathbf \,, due to the compounded accumulation of rounding errors, the computed solution \hat may sometimes deviate from the exact solution \mathbf_\star\,. Starting with \mathbf_1 = \hat\,, iterative refinement computes a sequence \ which converges to \mathbf_\star\,, when certain assumptions are met. Description For m = 1, 2, 3, \dots\,, the th iteration of iterative refinement consists of three steps: The crucial reasoning for the refinement algorithm is that although the solution for in step (ii) may indeed be troubled by similar errors as the first solution, \hat\mathbf, the calculation of the residual in step (i), in comparison, is numerically nearly exact: You may not know the right answer very well, but you know quite accurately just how far the solution you have in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iterative Method
In computational mathematics, an iterative method is a Algorithm, mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''i''-th approximation (called an "iterate") is derived from the previous ones. A specific implementation with Algorithm#Termination, termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or Quasi-Newton method, quasi-Newton methods like Broyden–Fletcher–Goldfarb–Shanno algorithm, BFGS, is an algorithm of an iterative method or a method of successive approximation. An iterative method is called ''Convergent series, convergent'' if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common. In contrast, direct methods attempt to solve the problem by a finit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. Using these operations, a matrix can always be transformed into an upper triangular matrix (possibly bordered by rows or columns of zeros), and in fact one that is in row echelon form. Once all of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Epsilon
Machine epsilon or machine precision is an upper bound on the relative approximation error due to rounding in floating point number systems. This value characterizes computer arithmetic in the field of numerical analysis, and by extension in the subject of computational science. The quantity is also called macheps and it has the symbols Greek epsilon \varepsilon. There are two prevailing definitions, denoted here as ''rounding machine epsilon'' or the ''formal definition'' and ''interval machine epsilon'' or ''mainstream definition''. In the ''mainstream definition'', machine epsilon is independent of rounding method, and is defined simply as ''the difference between 1 and the next larger floating point number''. In the ''formal definition'', machine epsilon is dependent on the type of rounding used and is also called unit roundoff, which has the symbol bold Roman u. The two terms can generally be considered to differ by simply a factor of two, with the ''formal definition'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Condition Number
In numerical analysis, the condition number of a function measures how much the output value of the function can change for a small change in the input argument. This is used to measure how sensitive a function is to changes or errors in the input, and how much error in the output results from an error in the input. Very frequently, one is solving the inverse problem: given f(x) = y, one is solving for ''x,'' and thus the condition number of the (local) inverse must be used. The condition number is derived from the theory of propagation of uncertainty, and is formally defined as the value of the asymptotic worst-case relative change in output for a relative change in input. The "function" is the solution of a problem and the "arguments" are the data in the problem. The condition number is frequently applied to questions in linear algebra, in which case the derivative is straightforward but the error could be in many different directions, and is thus computed from the geometry of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Norm
In mathematical analysis, the uniform norm (or ) assigns, to real- or complex-valued bounded functions defined on a set , the non-negative number :\, f\, _\infty = \, f\, _ = \sup\left\. This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions converges to under the metric derived from the uniform norm if and only if converges to uniformly. If is a continuous function on a closed and bounded interval, or more generally a compact set, then it is bounded and the supremum in the above definition is attained by the Weierstrass extreme value theorem, so we can replace the supremum by the maximum. In this case, the norm is also called the . In particular, if is some vector such that x = \left(x_1, x_2, \ldots, x_n\right) in finite dimensional coordinate space, it takes the form: :\, x\, _\infty := \max \left(\left, x_1\ , \ldots , \left, x_n\\right). This is c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Approximation Error
The approximation error in a given data value represents the significant discrepancy that arises when an exact, true value is compared against some approximation derived for it. This inherent error in approximation can be quantified and expressed in two principal ways: as an absolute error, which denotes the direct numerical magnitude of this discrepancy irrespective of the true value's scale, or as a relative error, which provides a scaled measure of the error by considering the absolute error in proportion to the exact data value, thus offering a context-dependent assessment of the error's significance. An approximation error can manifest due to a multitude of diverse reasons. Prominent among these are limitations related to computing machine precision, where digital systems cannot represent all real numbers with perfect accuracy, leading to unavoidable truncation or rounding. Another common source is inherent measurement error, stemming from the practical limitations of inst ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating Point
In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a signed sequence of a fixed number of digits in some base) multiplied by an integer power of that base. Numbers of this form are called floating-point numbers. For example, the number 2469/200 is a floating-point number in base ten with five digits: 2469/200 = 12.345 = \! \underbrace_\text \! \times \! \underbrace_\text\!\!\!\!\!\!\!\overbrace^ However, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. Floating-point arithmetic operations, such as addition and division, approximate the corresponding real number arithmetic operations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IEEE 754
The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard #Design rationale, addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and Software portability, portably. Many hardware floating-point units use the IEEE 754 standard. The standard defines: * ''arithmetic formats:'' sets of Binary code, binary and decimal floating-point data, which consist of finite numbers (including signed zeros and subnormal numbers), infinity, infinities, and special "not a number" values (NaNs) * ''interchange formats:'' encodings (bit strings) that may be used to exchange floating-point data in an efficient and compact form * ''rounding rules:'' properties to be satisfied when rounding numbers during arithmetic and conversions * ''operations:'' arithmetic and other operatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extended Precision
Extended precision refers to floating-point number formats that provide greater precision than the basic floating-point formats. Extended-precision formats support a basic format by minimizing roundoff and overflow errors in intermediate values of expressions on the base format. In contrast to ''extended precision'', arbitrary-precision arithmetic refers to implementations of much larger numeric types (with a storage count that usually is not a power of two) using special software (or, rarely, hardware). Extended-precision implementations There is a long history of extended floating-point formats reaching back nearly to the middle of the last century.. Various manufacturers have used different formats for extended precision for different machines. In many cases the format of the extended precision is not quite the same as a scale-up of the ordinary single- and double-precision formats it is meant to extend. In a few cases the implementation was merely a software-based change i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadruple-precision Floating-point Format
In computing, quadruple precision (or quad precision) is a binary floating-point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables. William Kahan, primary architect of the original IEEE 754 floating-point standard noted, "For now the 10-byte Extended format is a tolerable compromise between the value of extra-precise arithmetic and the price of implementing it to run fast; very soon two more bytes of precision will become tolerable, and ultimately a 16-byte format ... That kind of gradual evolution towards wider precision was already in view when IEEE Standard 754 for Floating- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Back Substitution
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix ''L'' and an upper triangular matrix ''U'' if and only if all its leading principal minors are non-zero. Description A matrix of the form :L = \begin \ell_ & & & & 0 \\ \ell_ & \ell_ & & & \\ \ell_ & \ell_ & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_ & \ell_ & \ldots & \ell_ & \ell_ \end is called a lower triangular matrix or left triangular matrix, and a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James H
James may refer to: People * James (given name) * James (surname) * James (musician), aka Faruq Mahfuz Anam James, (born 1964), Bollywood musician * James, brother of Jesus * King James (other), various kings named James * Prince James (other) * Saint James (other) Places Canada * James Bay, a large body of water * James, Ontario United Kingdom * James College, a college of the University of York United States * James, Georgia, an unincorporated community * James, Iowa, an unincorporated community * James City, North Carolina * James City County, Virginia ** James City (Virginia Company) ** James City Shire * James City, Pennsylvania * St. James City, Florida Film and television * ''James'' (2005 film), a Bollywood film * ''James'' (2008 film), an Irish short film * ''James'' (2022 film), an Indian Kannada-language film * "James", a television episode of ''Adventure Time'' Music * James (band), a band from Manchester ** ''James'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |