HOME
*



picture info

Isolation By Distance
Isolation by distance (IBD) is a term used to refer to the accrual of local genetic variation under geographically limited dispersal. The IBD model is useful for determining the distribution of gene frequencies over a geographic region. Both dispersal variance and migration probabilities are variables in this model and both contribute to local genetic differentiation. Isolation by distance is usually the simplest model for the cause of genetic isolation between populations. Evolutionary biologists and population geneticists have been exploring varying theories and models for explaining population structure. Yoichi Ishida compares two important theories of isolation by distance and clarifies the relationship between the two. According to Ishida, Sewall Wright's isolation by distance theory is termed ecological isolation by distance while Gustave Malécot's theory is called genetic isolation by distance. Isolation by distance is distantly related to speciation. Multiple types of isol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Identity By Descent
A DNA segment is identical by state (IBS) in two or more individuals if they have identical nucleotide sequences in this segment. An IBS segment is identical by descent (IBD) in two or more individuals if they have inherited it from a common ancestor without recombination, that is, the segment has the same ancestral origin in these individuals. DNA segments that are IBD are IBS per definition, but segments that are not IBD can still be IBS due to the same mutations in different individuals or recombinations that do not alter the segment. Theory All individuals in a finite population are related if traced back long enough and will, therefore, share segments of their genomes IBD. During meiosis segments of IBD are broken up by recombination. Therefore, the expected length of an IBD segment depends on the number of generations since the most recent common ancestor at the locus of the segment. The length of IBD segments that result from a common ancestor ''n'' generations in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Genetic Isolation By Distance In Kanitz 2018
Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, and language. Humans are highly social and tend to live in complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states. Social interactions between humans have established a wide variety of values, social norms, and rituals, which bolster human society. Its intelligence and its desire to understand and influence the environment and to explain and manipulate phenomena have motivated humanity's development of science, philosophy, mythology, religion, and other fields of study. Although some scientists equate the term ''humans'' with all members of the genus ''Homo'', in common usage, it generally refers to ''Homo sapiens'', the only extant member. Anatomically modern huma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Biological Dispersal
Biological dispersal refers to both the movement of individuals (animals, plants, fungi, bacteria, etc.) from their birth site to their breeding site ('natal dispersal'), as well as the movement from one breeding site to another ('breeding dispersal'). Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, settlement and there are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences both for evolutionary strategies at a species level, and for processes at an ecosystem level, requires understanding on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Genetic Isolation
Introduction Geographic isolation or other factors that prevent reproduction have resulted in a population of organisms with a change in genetic diversity and ultimately leads to the genetic isolation of species. Genetic isolates form new species through an evolutionary process known as speciation. Today, all the species diversity present on earth is the product of genetic isolate and evolution. The current distribution of genetic differences and isolation within and among populations is also influenced by genetic processes, which can give significant input into evolution's basic principles. The resulting genetic diversity within a species' distribution range is frequently unequally distributed, and large disparities can occur at the series of ranges when population dispersion and isolation are critical for species survival. The interrelationship of genetic drift, gene flow, and natural selection determines the level and dispersion of genetic differences between populations and am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Evolutionary Biology
Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution is based on the theory that all species are related and they gradually change over time. In a population, the genetic variations affect the physical characteristics i.e. phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Some examples of evolution in species over many generations are the Peppered Moth and Flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology. The importance of studying Evolutionary biology is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Population Genetics
Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics. Traditionally a highly mathematical discipline, modern population genetics encompasses theoretical, laboratory, and field work. Population genetic models are used both for statistical inference from DNA sequence data and for proof/disproof of concept. What sets population genetics apart from newer, more phenotypic approaches to modelling evolution, such as evolutionary game theory and adaptive dynamics, is its emphasis on such genetic phenomena as dominance, epi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coefficient Of Relationship
The coefficient of relationship is a measure of the degree of consanguinity (or biological relationship) between two individuals. The term coefficient of relationship was defined by Sewall Wright in 1922, and was derived from his definition of the coefficient of inbreeding of 1921. The measure is most commonly used in genetics and genealogy. A coefficient of inbreeding can be calculated for an individual, and is typically one-half the coefficient of relationship between the parents. In general, the higher the level of inbreeding the closer the coefficient of relationship between the parents approaches a value of 1, expressed as a percentage, and approaches a value of 0 for individuals with arbitrarily remote common ancestors. Coefficient of relationship The coefficient of relationship ( r ) between two individuals B and C is obtained by a summation of coefficients calculated for every line by which they are connected to their identical ancestors point, common ancestors. Each su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reproductive Isolation
The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.Strickberger, M. 1978. ''Genética''. Omega, Barcelona, España, p.: 874-879. .Futuyma, D. 1998. ''Evolutionary biology'' (3ª edición). Sinauer, Sunderland. The mechanisms of reproductive isolation have been classified in a number of ways. Zoologist Ernst Mayr classified the mechanisms of reproductive isolation in two broad categories: pre-zygotic for those that act before fertilization (or before mating in the case of animals) and post-zygotic for those that act after it.Mayr, E. 1963. ''Animal species and evolution''. Harvard University Press, Cambridge. The mechanisms are genetically controlled and can appear in species whose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]